DNV·GL

ICME for Advanced Manufacturing of Ni Superalloy Heat Exchangers with High Temperature Creep + Oxidation Resistance for Supercritical CO2

Christopher Taylor, Taiwu Yu, Pengyang Zhao, Supriyo Chakraborty, Steve Niezgoda, Yunzhi Wang, Brett Tossey

DNV GL, The Ohio State University

Christopher Taylor 18 September 2020

DE-FE0031631. AOI 2: Computational Tools to Support Advanced Manufacturing of Fossil Energy Technologies This work is supported by the Department of Energy, National Energy Technology Laboratory under contract #DE-FE0031631, with contract manager Dr. Vito Cedro

Talk Outline

- Objective
- ICME Modeling Tasks
- High Temperature Oxidation Modeling
- Creep Modeling
- Integration with Phase Field
- Advanced Manufacturing of Multi-Material HX Components
- Testing and Characterization
- Milestone Review

Objective

- Microchannel heat-exchangers with optimal durability
- Targeting additive manufacturing design for supercritical CO₂ power
 - 700-1000 C, 50+ years
- Optimized material combinations:
 - Surface skin: alumina former, such as Haynes alloy 224 (high temperature oxidation resistance)
 - Internal layer: chromia former having high creep resistance
- Avoid internal oxidation and dissolution of γ' in near-surface
- Develop and Validate an Integrated Computational Materials Engineering approach to materials design

ICME Strategy

An integrated model tackling creep-oxidation failure mode of superalloy materials must address:

- Rate of oxidation
- Rate of materials diffusion
- Phase transformation
- Strength evolution
- □ Creep dynamics

Continuous chemical/microstructure/strength model

- d(t) oxide film growth rate from Wagner kinetics
 - \rightarrow C(x,t) from oxidation/diffusion model/DICTRA
 - $\rightarrow \mu(x,t)$ from thermodynamics analysis
 - \rightarrow S(x,t) from coupled phase field/crystal-plasticity

4

High Temperature Oxidation Modeling

Creep Modeling

- Progress
 - Creep modeling framework developed under NETL Grant No. DE-FE002776 has been adapted for use to predict creep in response to the evolution of γ' structure due to in-service oxidation.
 - Currently undergoing testing
 - Creep data for Haynes 224 (provided by Vinay Deodeshmukh of Hayes International) has been sorted/organized and processed for use to calibrate creep model
 - Calibration of models for Haynes 282 and 224 Underway

• Upcoming Activities

- Simulations of oxidized Haynes 282 samples are underway and will be detailed in the next report
- Preliminary creep simulations on as received Haynes 224 will also be presented.
- Continued cleanup of test data from Haynes

 $\log(stress) = a_0 + a_1 * LM + a_2 * LM^2$

$$LM = T_{abs} * [C + log(hours)]$$

DICTRA Simulation Setup flux boundary condition with k_p from Chris

DICTRA Simulation result

Synthesis of Novel Composition-Gradient Materials

 Weld overlay to mimic the bi-material and collect oxidation and phase-transformation/ageing data

Haynes 282 sheet with 224 weld overlay in place

HIP Cans after HIP by Quintus

Tubular with PM and HIP/HT

- 224 tubular, packed with 282 powder around a steel core
- HIP treatment to consolidate and provide metallurgical bond
- Quintus Technologies has provided at no-cost research support in advising on methods and to fabricate tubular samples with HIP
 - Round one: no metallurgical bond was created
 - Round two: good metallurgical bond, samples currently being characterized
 - Next steps: Heat treatment and creep testing

Microscopic image of metallurgical bond region

Testing and Characterization

- Exposure tests begun 8/18/2019 at 900C, 800C, and 700C.
 - First interval exposure is 900 hours (10/4/2019)
 - Second interval will be ~5,000 hours (209 days) or March 16, 2020
 - Finally ~10,000 hours (417 days) or October 2020
 - The environment is carbon dioxide at 1 atm.

Weld-overlay showing dissimilar grain structure in 224/282

γ –depleted regions are marked in red lines above.
The depth of depleted region varies between 55 – 67 μm.

Typical Example of high-resolution Imaging in the SEM to characterize the extent of γ precipitate dissolution

Microstructure: Typically 15-20 μ m thick oxide scale is observed on the surface with additional oxygen intrusion of 1-1.5 grain diameter depth along the grain boundary.

Typical Example of high-resolution Imaging combined with EDS Spectroscopy in the SEM to characterize the extent of oxygen intrusion

Alloy 282- Exposed at 925°C,1000 hrs (without the protection from Al-rich oxide layer

Alloy 282- No Protection from Al-rich oxide layer

Alloy 224- Good Protection from Al-rich oxide layer

Aluminum rich oxide layer can be seen sandwiched between the bulk material.

Milestones

Date	Milestone	Status	Updated Target
2-1-2019	MS 1. ICME Integration Plan	Complete	
2-1-2019	MS 2. Sample Fabrication: High Temperature Oxidation Coupons	Complete	
9-1-2019	MS 3. Fabrication of microchannel-like prototype component	Delayed: Materials, COVID and Quintus partnership	11-30-2020
11-1-2019	MS 4. High temperature oxidation testing	Delayed	10-1-2020
6-1-2020	MS 5. High temperature creep testing of prototype component	Delayed	6-1-2021
9-30-2020	MS 6. Demonstration, verification and validation of model	Delayed	9-30-2021

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

13 DNV GL © 18 September 2020

