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Compact Diffusion bonded heat exchangers - use and benefit

 Referred to as Microchannel Heat Exchangers (MCHEs) or Printed 
Circuit Heat Exchangers (PCHEs)

 Ideal for high pressure and temperature applications
 Temperature cryogenic to 950C (1740 F) and Pressure  as high 

as 110 Mpa (16,000 psi)
 Compared to shell and tube HEXs for high pressure,

 10 x smaller, 4x lower cost
 Applications include

 Supercritical CO2 power cycles (HT recuperators and coolers)
 Hydrogen vehicle filling stations
 Liquified natural gas processing
 Gas turbine fuel preheating 
 Molten salt and particle high temperature thermal storage, IHX



Compact Diffusion Bonded Heat Exchanger Construction 

Diffusion bonding process is a solid state 
(grain growth based) joining process with 
no interlayer, braze material or gasket. It 
has a parent material strength 

Qualified as per Appendix 42 of  ASME 
Section VIII, Div 1
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Channel forming & plate stacking Diffusion bonding (Monolithic block)

Various proprietary surface preparations employed to promote grain growth for high nickel superalloys. 



 Fluid flow paths designed using proprietary algorithms has  
nearly unlimited layout (only limitation of being able to draw 
within a 2-D space). Allows ability to significantly enhance heat 
transfer enhancement with a balanced pressure drop. 

 The flow passages are formed by either photo chemical etching, 
electro chemical machining or other CNC machining methods. 

 Cost is optimized using innovative channel layout that utilize 
pure counter flow as well as channel heat transfer 
enhancement using zig-zag, hard-ways, lanced, and bypass. 

Mechanical design of channels, and headers  meet ASME BPVC, 
Section VIII, Div 1.
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Compact Diffusion Bonded Heat Exchanger Construction 



Vacuum Process Engineering, Inc. (VPE) is the most experienced 
domestic manufacturer of MCHEs

 Operates four (4) facilities in Sacramento, CA

 40+ years of diffusion bonding experience

 150,000 sq. ft. of space

 World’s largest vacuum hot press

Many complex geometries possible

Large vacuum furnace 
with twin hot press
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Compact diffusion bonded heat exchangers are used in hydrogen fuel 
stations - high pressure cyclic / fatigue service



Ultra-high pressure hydrogen 
precoolers (H2PCTM)
for hydrogen vehicle fueling stations

• Hydrogen precoolers operate at very high pressure 
(5000 psi – 14000 psi)

• Designed to cool high pressure hydrogen from 
approximately 40 °C to -40 °C.

• Use liquid coolants and refrigerants including Syltherm 
XLT, Dynalene HC, R452, R449. CO2 for cooling H2

• They are subject to high pressure cycles - every fill 
requiring pressure ramp up from zero / tank pressure 
(~1000 barg) to 14,000 psi.

• VPE designs and fabricates various compact high 
pressure hydrogen precooler models for light and 
heavy duty vehicles as well as mobile filling stations.

• Extremely low helium leak rates
• 10E-09 atm cc/sec standard
• 10E-07 cc/sec typical for alternative equipment



High pressure hydrogen precooler fatigue test and numerical simulations
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Precooler designed for a 2 min fill of a 6 kg tank
• 11 x 6 x 7 inches (280 x 155 x 175 mm)
• 80 lbs (36 kg)

Experimental test set up at Sandia National Laboratories

 Controlled pressures between 500 and 60000 psi (34 to 4100 bar)
 Fully automated for long duration tests
 The pressure vessel test rig includes:

1. Pressure vessel test cart
2. Control system
3. H2PC™ heat exchanger
4. Helium leak check enclosure
5. Secondary containment
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Experimental Methods and Results
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 97.5% of cycles met or exceeded the target
 No observable signs of failure in 300k cycles
 No detectable helium leak rate in 10 tests
 Below the 1x10E-08 cc/sec floor of the sensor

 12700 psi (875 bar) target pressure
 3480 psi/min (240 bar/min) ramp rate target from SAE J2601
 Helium leak check every 104 cycles
 Calibrated with a 1.3x10E-07 source
 Pressure ramped up 7.5X fast after finishing 100K to 300K cycles



Proof pressure test conducted after 300K fatigue cycle test
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 After 300k pressure cycles and helium leak test, 

the precooler was proof tested 2X design pressure 

29,000 psi (200 Mpa) for one hour as per code.

 Pressure ramped up at 100 bar per minute.

 No detectable leaks down to 10E-08 atm cc/s



Numerical Simulation – conducted by Sandia National Laboratories 
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Goal: Simulate thermal/mechanical response of MCHE to temperature and pressure 

Conformal Decomposition FEM (CDFEM) decomposes a non‐conforming background mesh 
into sub‐elements that conform to interfaces defined by a level set method

SIERRA/Aria is a finite element method (FEM) for solving systems of partial differential 
equations (PDEs) used here to solve the thermal advection-diffusion equation

SIERRA/Adagio is a three-dimensional, implicit solid mechanics code used to solve for 
quasi-static, nonlinear deformation of solids. 

Workflow



Numerical Simulations - meshing
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Conformal Decomposition Finite Element Method (CDFEM)

 CDFEM is an alternative meshing approach to traditional 
volumetric schemes.

• Use one or more level set fields to define materials or phases
• Decompose non-conformal elements into conformal ones
• Obtain solutions on conformal elements

 Procedure: 
• Mesh the domain using tetrahedral elements
• Use STL geometry descriptions of microchannel volumes to 

create level set fields that cut the background mesh to 
produce entities for thermal/mechanical simulations 
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 Model created in Sierra Solid Mechanics
• Single unit cell slice of the full unit
• 133 million quadratic tetrahedral elements
• Mesh refined near corners and surfaces

 Material properties and loading conditions
• 875 bar / 35 bar on ‘hot’ / ‘cold’ sides
• 200 GPa Young’s modulus
• 0.265 Poisson’s ratio
• Linear elastic stress model

Numerical Simulations – Pressure Loading
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• Stress magnitudes averaged over due to high local stress   
concentrations at sharp corners

• Code limit = 1.5 x 138 MPa = 207 Mpa
• Small areas of high stress concentration plastically deform 

and are negligible
• VIII Div II allows up to 3x allowable

• Mesh refinement study of key parameters 
demonstrated second order convergence

• Local refinement near gradients
• Indicates of good mesh and model

Numerical Simulation – Results
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Conclusion

 No failure, deformation, or reduced holding pressure seen 
after 300k cycles and proof test at 2X design pressure.

 The fatigue test and simulation results validated VPE 
Hydrogen precooler design for long duration use >300k 
pressure cycles in hydrogen vehicle fueling stations





VPE CONFIDENTIAL

Compact Diffusion Bonded PCHE Development Using Nickel Superalloys for Highly 
Power Dense and Modular Energy Production Systems

Develop a very high temperature diffusion bonded compact heat 
exchanger using Nickel based superalloys (Alloy 740 H, HR230, HR 
282).  PCHEs capable of operating to very high temperature (>8000C) 
and high pressure (>250 barg) services.

Produce an optimized modular design that enables < $2000 0C/kWth 
for stationary modular power generations, including, CSPs, Gen IV 
nuclear systems (SMRs and VSMRs). 
Project Team:  National Energy Laboratory (NETL)

Sandia National Laboratories (SNL)
Special Metals Inc
Echogen Power Systems 

Project Goal
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