

Characterization of Long-Term Serviced Coal Combustion Power Plant Extreme Environment Materials

S. Kung, A. Bridges, T. Lolla, J Siefert, J. Shingledecker

DOE-NETL 2020 FE R&D Project Review Meeting September 29, 2020

 Image: Second system
 Image: Second system

 Image: Second

Challenges for Coal Fleet

Avg age of existing U.S. coal fleet is >40 years

- Many already operated beyond the original design lives
- Expectation is to continue for another 30 years
- Most units were designed for baseload operation
- Practice of some level of flexible operation
 - Intermittent deployment of renewables
 - Low natural gas prices/CC

Project Objectives and Approaches

To develop a database for microstructures, damage mechanisms, and mechanical properties of long-term serviced EEM (>100,000 hours)

- Perform detailed characterization and mechanical testing
 - NDE, macro and microstructures, and various mechanical testing
- Link compositions and microstructural features to long-term behaviors of materials
 - Secondary phases, inclusions, decomposition/evolution, damage
- Develop a comprehensive database on mechanical properties and microstructural information

Database will be shared with DOE and 3rd-party researchers in future materials research and modeling

Key Tasks

- Task 1: Project Management
- Task 2: Identification and Removal of Material Components
- Task 3: Metallurgical Characterization of Component Alloys
 - Engineering materials are not homogenous
- Task 4: Fabrication of Test Samples for Mechanical Testing

Task 5: Mechanical Testing and Remaining Life Assessment of Components

- Uniaxial tensile testing
- Fracture toughness testing
- Charpy V-notch / notch bar impact testing
- Fracture toughness testing
- Base-metal creep testing
- Cross-weld creep testing
- Creep fatigue testing
- Estimation of remaining life
- Task 6: Data and Material Repository

List of Power Plant EEM Components

Туре	Material	Source	Component	Vintage/ Hours	Quantity Received
Ferritic	½Cr-½Mo-¼V	Utility #3	CrMoV Turbine lead piping (straights, ends and girth weld)	~270,000 <u>hrs</u>	One lead
	Grade 22	Utility #3	Grade 22 seam-welded HRH piping	435,000	
	Grade 22	Eddystone #2	Main steam piping - large radius Grade 22 bends to SP valve	1960	2 bends (15' long)
	Grade 91	Utility #2	Grade 91 superheater outlet headers	141,000 <u>hrs</u>	2 headers
	Grade 91	Utility #4	Seam-welded Grade 91 hot reheat outlet header	>100,000 <u>hrs</u>	1 section, 30" long
SS	316H OC	Eddystone #1	Main steam piping from boiler to SP valve, including bends and large and small bore welds	1983	2 sections, 20'long
	316H OC	Eddystone #1	Main steam piping in penthouse (large/small bore welds)	1983	2 sections, 8' long
	316H	Eddystone #1	Outlet piping from junction header turbine. Straights, large radius bend, girth weld(s) and small bore penetration welds	1963	2 leads, each about 25' long
	316H	Eddystone #2	Main steam collection header with link piping	1960	2 headers
SS + DMWs	316H, 316H to Grade 22	Eddystone #1	SP valve assembly, with 316H/P22 DMWs	1968	1 assembly, 2 DMWs
	316H, 316H to Grade 22	Eddystone #1	Turbine J-loop piping, with 316H/F22 DMWs	2007	2 loops, 2 DMWs
	316H, 316H to Grade 22	Eddystone #2	Main steam piping, with 316/P22 DMW	early 1990s	2 DMWs
	321H, 321H to Grade 22	Utility #3	Austenitic stainless steel superheater tubing	290,000 <u>hrs</u>	Many
	347H; 347H to Grade 22	Utility #4	347H FSH tubing; DWMs between 347H and T22	~100,00hr	~100 <u>ft</u>
	321H, 321H to Grade 22	Utility #5	Austenitic stainless steel superheater and reheater tubing	>250,000 <u>hrs</u>	Numerous
Turbine	Variable	Eddystone #1	Super pressure rotors	1960	2 rotors

An additional Grade 91 outlet header was identified and being acquired from UK after ~125,000 hours of service

5

316H MS Collection Header

1.00

316H to Grade 22 DMW

316H Outlet Piping

© 2020 Electric Power Research Institute, Inc. All rights reserved.

Task 5 - Mechanical Testing

Key Activities

- Perform testing on select materials
- Time-dependent testing
 - creep
- Time-independent testing
 tensile, impact, fracture toughness, etc.
- Detailed characterization
 - Macro-scale evaluation of damage locations and features
 - Detailed SEM/TEM micro-scale evaluations
- External collaboration
- ORNL Grade 91 and 316H components
- CRIEPI (Japan) Grade 91 outlet header

Component Materials

- Grade 91 Steel
- Grade 22 Steel
- $\Box \frac{1}{2}Cr\frac{1}{2}Mo\frac{1}{4}V$ Steel
- □ 316H Stainless Steel
- □ 347H Stainless Steel
- □ 321H Stainless Steel

Example 1: Grade 91 Main Steam Outlet Header

- SH outlet header to HP turbine
- Pedigree:
 - 141,000 hours of service
 - 575°C (1,067°F) and 178 bar (2,590 psi)
 - ~ ~3,300 starts
- Testing Performed:
 - Round-bar creep tests in base metal (F91 and P91)
 - Feature-type cross-weld creep tests (DMW)
 - Standard, time-independent tests (tensile, charpy, hardness, etc.)

Example 1: Feature-Type Creep Tests for P91/F91 DMW

Sample #1: 625°C (1,157°F) and 80 MPa (11.5 ksi)

- Test ruptured after 556 hours
- Sample #2: 625°C (1,157°F) and 60 MPa (8.7 ksi)
 - Test interrupted after 1,637 hours
 - Life fraction >98%
 - See macro metallography (next slide)

Sample #2 test was interrupted immediately before failure (at >98% life fraction)

Example 1: Damage in P91/F91 DMW

Damage in F91 HAZ is extensive with macro-cracking (>1 mm) near end-of-life

Example 2: Eddystone Unit 2 Main Steam Piping

316H/Gr. 22 DMW Piping

- Main steam piping to super pressure valve
- Early 1990s vintage
- Operating temperature: 1050°F (565°C)
- Operating pressure: 3750 psig

- 316H base-metal creep tests - DMW cross-weld creep tests

Example 2: P22/316H DMW Test Results

- DMW creep testing conditions
 - 575°C and 80 MPa
 - 600°C and 60 MPa
 - 625°C and 40 MPa
- Distinct difference in failure mode under different testing conditions
 - Fusion line & ductile failure in 80 MPa test
 - HAZ and fusion line damage in 60 MPa test

Results reveal different failure modes of common Gr-22/SS DMW in power plants

Characterization Methods

Development of unique techniques and procedures

- Through-wall grain size analysis and mapping
- Through-wall hardness distribution
 ~80,000 indent locations
- Through-wall sigma phase mapping
 - ~100,000 features (location, size, shape)
- Inclusion mapping using EDS automation
- Large-area elemental mapping using X-Ray fluorescence
- Oxide scale characterization
 - Elemental distribution of oxide scales
 - Automated oxide thickness measurements

Status of Mechanical Testing Task

- Creep testing
 - >42,300 hours in base-metal creep tests
 - >30,000 hours in feature-type cross-weld creep tests
 - Metallography conducted for every sample after test
- ORNL collaboration
 - >1,400 hours in Grade 91 cross-weld and base-metal tests
 - Additional creep tests for 316H planned
- CRIEPI collaboration

www.epri.com

 >12,000 hours in Grade 91 base-metal creep tests

Work performed under agreement DE-FE0031562 NETL Project Manager: Vito Cedro

Contact: Steven Kung, Ph.D., FNACE Electric Power Research Institute <u>skung@epri.com</u> 704-595-2663

Together...Shaping the Future of Electricity

