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About Arconic
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Arconic (NYSE: ARNC) creates breakthrough products that shape industries.
Working in close partnership with our customers, we solve complex
engineering challenges to transform the way we fly, drive, build and power.

Through the ingenuity of our people and cutting-edge advanced manufacturing
techniques, we deliver these products at a quality and efficiency that ensure
customer success and shareholder value. For more information:
www.arconic.com .



http://www.arconic.com/
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Sponsor Need

» The need to improve the quality and minimize fragility of the final product
during AM process, requires a deeper understanding of the kinetics of rapid
solidification of alloys.

» Information and data that leads to a kinetic phase-diagram for alloy rapid
solidification is very useful to AM industry in order to understand better at
what condition should they operate in order to have a homogeneous equiaxed

final product.



Multiscale Modelling of Microstructure Evolution During
Rapid Solidification for Additive Manufacturing
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» Metal additive manufacturing (AM) enables the fabrication of near-net-shape
metallic objects with reduced manufacturing time and minimal finishing.

» The ability to design the AM processing conditions that yield desired
microstructures would accelerate and streamline the entire fabrication process by
reducing the manufacturing cost and enhancing the energy efficiency.

» A vast majority of alloys can not be AM-ed because melting and solidification in the process lead to
anisotropic microstructure (columnar grains and periodic cracks)

» Achieving homogeneous p—structures i.e. crack-free, equiaxed (grains equal in space) is very sought after
in this industry.

» A bottom-up multiscale computational approach (from atomistic -> continuum)
enabled by HPC will be very valuable to inform the industry of the range of
conditions they need to tune their experiments.




Multiscale Modelling of Microstructure Evolution During MEE%’_S
Rapid Solidification for Additive Manufacturing (continued)
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» At the mesoscale level phase-field informed from
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Secondary Dendrite Arm Spacing (Al-4.5wt%Cu, 3.5 um) ==

» Can we simulate microstructures and study with between
cooling rate?

» Relation between cooling rate and grain size

» Aluminum alloys (of interest to industrial Partner) studied

» Mixtures of 10, 20 and 30% Cu or Fe with Al will be exposed to
different degrees of undercooling(30, 50, 100, 120, ..., 200 K) to
map a transition from partition to partitionless solidification.

» Similar conditions for the study of microstructure evolution in
phase-field meso-scale simulations.




Meso-scopic Phase-Field for Rapid Solidification:

MD informed PDE to account for rapid phase-transformation
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M. - mobility of the atoms
My, - mobility of the phase-field

Rapid solidification
ot V| T, - timescale for relaxation of rate of change of ¢

Tp - relaxation time for the diffusion flux



Effect of partition coefficient on p-Structure MATERIALS
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Effect of partition coefficient on p-Structure MATERIALS
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Cross comparing equilibrium phase diagrams
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Kinetic Part with Molecular dynamics using LAMMPS
A solid fcc nuclei with 2% Cu has been equilibrated with a surrounding
Al with 8% Cu and then undercooled to rapidly solidify
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Kinetic Part with Molecular dynamics using LAMMPS (10% molar Cu)

Color scheme is based on the calculation of the order parameter, blue
corresponding to the highest value.
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Solid seed and
liquid has the
same
composition
picked at he
liquidus line.




Order parameter computed from MD s

<110> orientation
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solid/liquid interface from an order parameter
calculated from local entropy oriented. Base
curve taken for 0 ns, all others taken at 2.25 ns.



Kinetic Part with Molecular dynamics using LAMMPS E==g

Simulations for pure Al for different Cooling rates MRTERIALS

» We also explored
different cooling rates to 10° K/s
track the nucleation
events and the kinetics of
the solid-liquid interface

* For pure Al a extreme
high cooling rate 1073 K/s
leads to vitrification.

1012 K/s

» We are exploring this at
the eutectics

1011 K/s




Opportunities for leveraging project to
support/foster future activities
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» Exascale computing effort among LLNL and other labs

» The extreme conditions that are explored here fall in the category of
materials under extreme conditions, which is very active in the lab.
Phase transition (melting/solidification) of materials under shock
compression.

» Experimental work in the lab, NIF, dDAC, dTemp etc.

» Other additive manufacturing modelling efforts in LLNL.



S umma ry MATERIALS

We have initiated we a multi-scale study of Rapid Solidification of Al alloys invoking Atomistic and
Mesoscopic phase-field .

Atomistic simulation of rapid solidification of AlCu alloys has been performed. We have done this by
using a solid seed inside a liquid AlCu alloy as an initial condition in a pencil-like geometry. In the work
presented we chose to have the same Cu composition in solid and liquid phase at the liquidus T.

Partition to partitionless transition is being identified. Information and data that lead to a kinetic
phase-diagram for alloy RS is very useful to AM industry in order to understand better at what condition
they should operate in order to have a homogeneous alloy.

Larger size systems are needed to determine a solute-based solidification for improving the accuracy of
the mesoscopic models. We will explore different compositions as well as different cooling rates.

We also are exploring the cooling rate range for the possibility of the vitrification of Al alloys at
eutectics




