

AM of Nickel Components & Joining of Dissimilar Metal Welds

Sebastien Dryepondt Team ORNL: Mike Kirka, Patxi Fernandez-Zelaia, Youseb Lee, Peeyush Nandwana

Siemens: A. Kulkarni, Kyle Stoodt, Jason Weissman 2020 HIGH PERFORMANCE MATERIALS PROJECT REVIEW MEETING

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Additive Manufacturing Could Have A Significant Impact on Fossil Energy Power Generation

- New more efficient and/or less expensive components of complex shape
- Control of microstructure for superior properties
- Graded chemistry and microstructure for dissimilar metal welds
- New domestic supply chain for FE components
- New alloys specific to future FE needs i.e. Hydrogen economy
- New approach to qualify alloys/components

Establishing process-microstructure-properties relationship for Ni-based AM Components

- Many process parameters can impact the microstructure
 - Optimize parameters (low defects density) and generate data relevant for FE applications
 - (Local) Control of the microstructure for superior properties
- Develop approach and physics-based tools for processmicrostructure-properties correlation
 - Hastelloy X, Ni-22Cr-19Fe-9Mo
 - Haynes 282, Ni-20Cr-10Co-8.5Mo 2.1Ti-1.5Al
 - Nimonic 105, Ni-20Co-15Cr-5Mo 4.5Al-1.2Ti

Large database generated for AM Hastelloy X

- Tensile (~90 tests), Creep (>40k cumulative hours), oxidation (>50k cumulative hours), Mechanical Fatigue
- Electron beam melting (EBM), Laser powder bed fusion (LPBF), Directed Energy Deposition (DED)
- As printed, annealed and hot isostatic pressed (HIP)

Large database generated for AM Hastelloy X

- Tensile (~90tests), Creep (>40k cumulative hours), oxidation (>50k cumulative hours), Mechanical Fatigue
- Electron beam melting (EBM), Laser powder bed fusion (LPBF), Directed Energy Deposition (DED)
- As printed, annealed and hot isostatic pressed(HIP)

Oxidation in air, 950°C, 1000h

Parameter Optimization for Superior EBM Hastelloy X Properties

- LPBF Hastelloy X exhibits superior strength but lower ductility compared with EBM Hastelloy X
- Variation in printing parameters can have a strong impact on the microstructure beyond defects density

New Point Net Beam Strategies to Control Thermal Gradients, Solidification Rates and Microstructures

Superior Creep Properties For As Fabricated EBM 282 But Lower Properties Perpendicular to the Build Direct

Build direction

- Columnar grains with strong texture due to "standard" raster beam strategy
- As fab 100nm gamma prime acceptable

Tensile properties (not shown) were similar along and perpendicular to the build direction

Controlling the Microstructure to Reduce EBM282 Creep Anisotropy at 800°C

Coarse grain via flood beam strategy

LIVALIONAL LADOLATOLY

Controlling the Microstructure to Reduce EBM282 Creep Anisotropy at 750°C

Mesoscale Texture Control Through Conductive Manipulation

Additional lateral conduction in melted metal compared to unmelted powder

P. Fernandez Zelaia et al. Materials & Design 2020

Variation of fatigue crack growth in EBM282 Composite Microstructure

- 2X da/dN change across microstructures
- Local control of the component microstructure to improve its performance

Understanding Crack Formation in High Gamma Prime Alloys for Crack-free Components

Crack Formation Modeling (EERE-AMO/FE)

Modelling requires:

- Thermal profile during printing
- Transient evolution of Microstructure
- Stress magnitude and distribution

Looking at new alloys relevant for FE such as Alloy Ni105 or ABD-900

Very different crack pattern compared to CM247

)ak Ridge

National Laboratory

Various Physic-Based Models For Process-Microstructure-Properties Correlation. EERE-AMO/FE Collaboration

Machine learning approach: autocorrelation functions using EBSD map For Microstructure Quantification

- Throw in many random vectors & Compute frequency of "similarity" of heads and tails
- Similarity metric considers absolute orientation not simply "coloring" from one IPF map.

Extract maximum constitutive information from experiments utilizing correlation statistics

Synthetic Microstructure to Accelerate Process-Microstructure-Performance Correlation

Process-Microstructure

Using Kinetic Monte Carlo Model

1.Melt Pool Shape

2.Scan pattern & 3.Geometry

Conversion from KMC to FEM

Statistical analysis of microstructural anisotropy using chord length distribution

Fabrication of AM Components Relevant for FE Applications

HX fuel injector

170mm to

Ni105 blade

Coated 282 combustion components

Functionally Graded Transition Joints to Enable Dissimilar Metal Welds

BeAM blown powder directed energy deposition system

- Goal: To produce transition joint from SS347H to Gr. 91
- Initial work on SS316 & ANA-2 (Fe-8Cr-2Mn) powders due to better powder flowability
- Key is to optimize the microstructure in the transition zone

Thermodynamic and FEA Simulations to OptimizeTransition Zone \widehat{a}^{-58}

100%SS/100%F

20

100%SS/50%SS-50%F-100%F

(KJ/mol) IdealLinearTransition -60 Change by 50% Change by 25% C -62Change by 10% Potential of -64 -66Chem. -68-70 1 2 5 Δ Distance (mm)

100%SS/70%SS-30%F/50%SS-50%F/30%SS-70%F/100%F

- Minimize change of C chemical potential
- Minimize stress due to mismatch in coefficient of thermal expansion

Conclusion: Great AM Opportunities for FE

- AM allows the fabrication of complex parts with local control of the microstructure for superior component performance
- Continuous development of physics-based models and data analytics tools for establishing processmicrostructure-properties correlation
- Broad range of opportunities due to AM versatility: graded microstructure for weld and coatings, large scale additive manufacturing to help with domestic supply chain, unique microstructure resistant to H embrittlement

