Accelerating the Development of Extreme Environment Materials

eXtremeMAT

Laurent Capolungo

Acknowledgements

Jeff Hawk, Ram Devanathan
Edgar Lara Curzio, Michael Brady, Yuki Yamamoto, Brandon Wood, Mark Cawkwell, Romain Perriot, Arul Kumar, Aaron Kohnert, Richard LeSar, Youhai Wen, Ricardo Lebensohn, Nghiep Nguyen, Ben Spencer, Millicent Orondo, Brian Gleeson, Dave Alman, Edgar Lara Curzio, Jeff Hawk, Kelly Rose, Dongwon Shin, Rishi Pillai, Paul Jablonski, Tom Lograsso, Madison Wenzlick, Rui Fen, Valery Borovikov, Jennifer Bauer, Osman Mamum, Arun Sathanur
XMAT: Objectives and structure

General scope: XMAT will develop, verify and validate research tools that help the US fossil energy industry in (i) assessing the failure of steel components subjected to complex non-monotonic loading, (ii) adopting emerging/new steels.

"I think it's very important to have a feedback loop, where you’re constantly thinking about what you’ve done and how you could be doing it better." E. Musk
XMAT: Objectives and structure

General scope: XMAT will develop, verify and validate research tools that help the US fossil energy industry in (i) assessing the failure of steel components subjected to complex non-monotonic loading, (ii) adopting emerging/new steels.

Applications to: conventional austenitic (347H, 316H) and ferritic steels (P91), XMAT X351..

Conditions: Temperatures from ~500 to 750°C, Maximum stresses 100 MPa, oxidation in air

“I think it's very important to have a feedback loop, where you're constantly thinking about what you've done and how you could be doing it better.” E. Musk
eXtremeMAT Thrusts

1. Material Lifetime & Performance Predictors
2. Component Lifetime & Performance Predictors
3. Data Science & Analysis Tools
eXtremeMAT Thrusts

1. Material Lifetime & Performance Predictors

2. Component Lifetime & Performance Predictors

3. Data Science & Analysis Tools

Capturing the effect of microstructure on contributing deformation mechanisms

A mechanistic constitutive model was developed to account for the effects of microstructure, stress and temperature on the relative activity of different plastic deformation and damage mechanisms.

The model accounts for:

- Effects of precipitates (strengthening and weakening).
- Effects of dislocation content (cells, cell, walls).
- Point defect mediated plasticity (Coble creep, dislocation climb).
- Damage (nucleation, growth, coalescence).
- Ageing (in progress)
A mechanistic constitutive model was developed to account for the effects of microstructure, stress and temperature on the relative activity of different plastic deformation and damage mechanisms.

The model accounts for:

- Effects of precipitates (strengthening and weakening).
- Effects of dislocation content (cells, cell walls).
- Point defect mediated plasticity (Coble creep, dislocation climb).
- Damage (nucleation, growth, coalescence).
- Ageing (in progress)
A mechanistic constitutive model was developed to account for the effects of microstructure, stress and temperature on the relative activity of different plastic deformation and damage mechanisms.

The model accounts for:

- Effects of precipitates (strengthening and weakening).
- Effects of dislocation content (cells, cell, walls).
- Point defect mediated plasticity (Coble creep, dislocation climb).
- Damage (nucleation, growth, coalescence)
- Ageing (in progress)

A synthetic database of creep rupture life is generated and mined to derive a new rupture life criterion from a limited number of short term creep tests.
Towards an integrated approach to assess the performance of structural components

LaRomance

Edith Piaf
(not affiliated with extremeMat)

Los Alamos

Reduced Order Models for Advanced Nonlinear Constitutive Equations

Data driven constitutive models sensitive to dislocation content, cell structures, precipitate content.

\[
\dot{\varepsilon}_{vm}(\rho_{cell}, \rho_w, \varepsilon_{vm}, \sigma_{vm}, T) \sim \sum_{c,w,e,o,T=0}^{\text{degree}} \alpha_{cweot} P_c(\rho_{cell})P_w(\rho_w)P_e(\varepsilon_{vm})P_o(\sigma_{vm})P_T(T)
\]

- A database of more than 30000 creep simulations is generated.
- Strain increments as a function of stress and materials state are recorded (>10^6 datapoints).
- The database is mined to derive a constitutive model that can be used in finite element simulations.
Predictive capability and integration of surrogate models

\[\sigma_a = 15 \text{ MPa} \]
1. Material Lifetime & Performance Predictors

2. Component Lifetime & Performance Predictors

3. Data Science & Analysis Tools