## High Throughput Computational Framework of Materials Properties for Extreme Environments

**Pls:** Zi-Kui Liu, Allison Beese, and Shun-Li Shang **Researchers:** Shipin Qin, John Shimanek, and Yi Wang

Department of Materials Science and Engineering The Pennsylvania State University, PA 16802

# Outline

- Overview of proposed goal and our approaches
- Results and discussion
  - A combined DFT/FEM approach to study stress-stain curve of single crystals
  - A combined DFT/FEM approach to study stress-stain curve of polycrystals
  - A combined DFT/ML approach to study key fundamental: Ideal shear strength of Ni-X (Ni<sub>11</sub>X)
- Summary of achievements

**Goal**  $\Rightarrow$  To establish an open-source infrastructure for predictive modeling of materials properties at extreme environments, including:

- High throughput DFT-based first-principles calculations for properties of interest, including such as phonon, thermodynamic, elastic, ideal shear strength, and stacking fault properties;
- High throughput CALPHAD modeling of the above properties using our unique capability;
- New capabilities to predict the stress-strain behavior of single crystals and ploycrystals; and
- Phase-based new models for tensile strength prediction using the common finite element method (FEM) analysis software.

**Overview** of high throughput computational framework for materials properties under extreme environments



- ✓ Predict proto data using DFT Tool Kit (DFTTK) and machine learning (SIPFENN)
- ✓ Apply FEM (ABAQUS) to predict strain-stress curve and tensile strength
- ✓ Use CALPHAD approach (ESPEI/PyCalphad) to predict processed data
- ✓ Validate results and improve models

## DFT/FEM $\Rightarrow$ stress-strain of single crystal

Dislocation interactions are the major strain hardening mechanism for fcc Ni At low strains: long-range dislocation interactions dominate At high strains: short-range dislocation interactions dominate

Dislocation interactions are realized in DFT-based calculations through the application of pre-strains



(MPa)

resistance

8

6

4

2

S. I. Rao, et al., Acta Mater., 2019

Slip system

(mesoscale)

## Single crystal hardening model

The Peierls-Nabarro model

$$\tau_{\rm P} = \frac{Kb}{a} \exp(\frac{-2\pi Kb}{4\pi d\tau_{\rm IS}})$$

 $\tau_{\rm IS}$  - Ideal shear strength from DFT-based calculations (is a function of pre-strains)  $\tau_{\rm P}$  - Flow resistance of a dislocation (the PN stress)



B. Joós et al., Phys. Rev. Lett., 1997.

Y. Huang, Harvard Univ., 1991.

D. Peirceet al., Acta Metall., 1982.

S. Qin et al., arXiv preprint arXiv, 2020.

CPFEM (crystal plasticity finite element method) model

$$\dot{\tau}_{c}^{\alpha} = \sum_{\beta=1}^{l} h_{\alpha\beta} \left| \dot{\gamma}^{\beta} \right|$$
$$h_{\alpha\beta} = q_{\alpha\beta} \left[ \frac{h_{0} \gamma}{\tau_{s} - \tau_{0}} \right]$$

 $h_0$ ,  $\tau_0$ , and  $\tau_s$  - CPFEM model parameters (determined from DFT-based predictions)  $\gamma^{\beta}$  - Pre-strain applied in DFT-based calculations  $\tau_c^{\alpha}$  - Flow resistance

At low strains (where edge dislocations dominate):

 $\tau_c^{\alpha} = \tau_{\rm P}^{edge}$ 

At **large strains** (where both edge and screw dislocations are present):

 $\tau_c^{\alpha} = (1 - w\gamma^{\beta})\tau_{\rm P}^{edge} + w\gamma^{\beta}\tau_{\rm P}^{screw}$ w - Weighting factor (=0.33, calibrated with macroscale experimental data)

## Results $\Rightarrow$ stress-strain of single crystal Ni

- CPFEM model parameters were calibrated from DFT-based predictions (except for the weighting parameter *w*)
- FEA using the calibrated CPFEM model agreed well with macroscale experiments



P. Haasen, *Philos. Mag.*, 1958. Z. Yao et al., *J. Nucl. Mater.*, 2003.

S. Qin et al., arXiv preprint arXiv, 2020.



#### Polycrystals: Bassani-Wu modification to single crystal model

$$h_{\alpha\beta} = \left\{ q - (q+1)\delta_{\alpha\beta} \right\} \cdot \left\{ (h_0 - h_s) \operatorname{sech}^2 \left[ \frac{(h_0 - h_s)\gamma}{\tau_s - \tau_0} \right] + h_s \right\} \cdot \left\{ 1 + \sum_{\beta \neq \alpha} f_{\alpha\beta} \tanh\left(\frac{\gamma^{\beta}}{\gamma_0}\right) \right\}$$

\*Extra parameters from Bassani-Wu model in red

#### Single slip system behavior: Polycrystal behavior: 137 grain polycrystal model Stage III Stage II Stage I 400 τ 350 Engineering Stress, MPa 300 250 200 $\tau_s$ 150 $h_{s}$ 100 08: $\tau_0 = 13$ , $h_0 = 280$ , $\tau_s = 30$ , $h_s = 0.1$ , $\gamma_0 = 0.25$ , $f_0 = 1$ , q = 1 $h_0$ 25: $\tau_0 = 68$ , $h_0 = 350$ , $\tau_s = 80$ , $h_s = 0.1$ , $\gamma_0 = 0.25$ , $f_0 = 1$ , q = 1 $\tau_0$ 50 Experimental 2um Experimental 130um γ 0.4 0.2 0.3 $\gamma_0$ 0.0 0.1 Engineering Strain, m/m

## Polycrystals: Automated optimization

**Bayesian optimization** is a machine learning based approach used for functions that are **expensive** to evaluate.

It does not require gradients.



Simplified polycrystal microstructures:



Used to find optimal Bassani-Wu parameters that match **experimental data** for polycrystal nickel of different **grain sizes** 

# Alloys: Ideal shear strength of Ni-X (Ni<sub>11</sub>X)

- Extend pure Ni calculations by DFT-based alias shear deformation to binary Ni-X (Ni<sub>11</sub>X) substitutional solid solution
- Ni host with 26 alloying elements X
- To explain differences in ideal shear strength, look at alloying element descriptors & their associations





### Alloys: Sequential wrapper method, correlations

Instead of the common belief of shear modulus, we found the dominant effects of atomic volume and electronegativity on ideal shear strength

Using a simple ML model, e.g. linear SVM:



| Index  | Ftest              | rRelief                               | R <sup>2</sup>       | MIC                  | wrapper-<br>backward | wrapper-<br>forward  |
|--------|--------------------|---------------------------------------|----------------------|----------------------|----------------------|----------------------|
| 1      | Radius_<br>Coval   | V0_Zhang                              | V0_Zhang             | V0_Zhang             | Ele_Conduc           | V0_Zhang             |
| 2      | NdUnfill           | EleDensity_<br>Zhang                  | EleNeg_<br>Zhang     | EleNeg_<br>Zhang     | V0_Zhang             | DebyeT               |
| 3      | EleNeg_<br>Pauling | M_Num2                                | EleDensity_<br>Zhang | DebyeT               | NfVal                | G_wiki               |
| 4      | NdVal              | Radius_<br>Coval                      | Radius_<br>Coval     | Y_wiki               | DebyeT               | Ele_Conduc           |
| 5      | V0_Zhang           | S298                                  | DebyeT               | G_wiki               | Heat_<br>capacity    | NfUnfill             |
| 6      | Group              | EleNeg_<br>Zhang                      | EleNeg_<br>Pauling   | M_Num2               | EleDensity_<br>Zhang | Y_wiki               |
| 7      | EleNeg_<br>Zhang   | PP_<br>radius_s                       | M_Num2               | Radius_<br>Coval     | Radius_<br>Coval     | EleNeg_<br>Zhang     |
| 8      | NUnfill            | PP_<br>radius_p                       | G_wiki               | EleDensity_<br>Zhang | Nval                 | Heat_<br>Sublimation |
| 9      | PP_<br>radius_p    | Max_range<br>_electrons_<br>in_solids | Y_wiki               | NdUnfill             | NpVal                | B_wiki               |
| <br>10 | M_Num2             | DebyeT                                | NUnfill              | Group                | Mass                 | BoilingT             |

Colored according to frequency in top 10



Multiscale approach from electron, atoms, to phase, and applications

- High-throughput calculations for fast data-gain
  - DFT-based first-principles calculations of thermodynamic/mechanical properties

**Molecular Dynamics** 

- CALPHAD modeling to develop the databases of interest
- Python-based open source codes: SIPFENN, DFTTK, ESPEI, and PyCalphad
- A combined DFT/FEM approach to study stress-stain curve and tensile strength for both single crystals and polycrystals
  - Phase-based Crystal plasticity finite element method (CPFEM) for single crystals
  - Phase-based CPFEM for polycrystals (Bassani-Wu modification)
  - Key fundamental ⇒ Ideal shear strength of Ni and Ni<sub>11</sub>X by DFT calculations and machine learning understanding

Applications

CALPHAD