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Materials Challenges:

* Higher Temperatures, Higher
Pressures, Corrosion & Oxidation =2
Extreme Environments

* Large Components =2
Manufacturability

* Long Service Life Span >100,000 hrs
—> Durability

* Penetration of Renewable -2
Cycling Operational Conditions

Technology Enabler: Affordable,

Durable and Qualified Structural
Materials for Harsh Service Life.




RIC Advanced Alloy Development FWP

Scope

The Advanced Alloy Development (AAD) Field Work Proposal (FWP)
supports the mission, goals, and objectives of the DOE-FE/NETL High
Performance Materials Program by developing affordable, durable,
cost effective, heat-resistant alloys and tools necessary for improving
the existing fleet of Fossil Energy (FE) power plants, and enabling
advanced FE systems, such as advanced ultra-supercritical (A-USC)
and supercritical carbon dioxide (sCO,) power cycles.
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Technology Development Schedule NA."ONAL

High-Performance Materials

Mission DOE-FE/NETL High
Performance Materials Program:
Characterize, produce, certify cost-
effective alloys and high-performance
materials suitable for extreme
environments found in coal power
generation to support existing and
new plants.

Develop 760C capable
materials (ComTest)

Enable AUSC Plants

Enable SCO2 Power Cycle:

Address Existing Fleet
Materials Issues

Reduce Alloy &

Component Costs
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- *\,; U.S. DEPARTMENT OF

'ENERGY

* |dentify supply chain issues and
performance/cost benefits

* Develop alternative cast and
wrought alloys for A-USC and
sCO, application

* Increase temperature capabilities
of steels, Ni alloys.

* |Improve melt processing of
advanced alloys.

* Assess, predict, and improve alloy
cyclic & environmental
performance.

* Materials Performance under
direct sCO, power cycles

* Enable manufacture of compact
heat-exchangers for sCO, power

cycles.




Techno-Economic & Market Assessments

Research Guidance and Direction (Systems Engineering & Analysis)

* High Performance Alloy Applications In Adjacent Markets

* Understanding the Supply Chain of Advanced Alloys
* Benefits of Advanced Materials for Boiler Tubes

* Export Potential for High-Performance Materials Study
* GADS Failures subsets analysis for boiler tubes, turbine, and BOP

rates (Hours/ Unit-vear)
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BENEFITS OF ADVANCED
MATERIAL USE FOR BOILER TUBES
IN COAL-FIRED POWER UNITS

PAUL MYLES, CHRISTA COURT, PAMELA SHIRLEY,
JEFFREY WITHUM, STEVE HERRON, ERIK SHUSTER
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HIGH PERFORMANCE ALLOY
APPLICATIONS IN ADJACENT MARKETS

VOLKER HEYDEMANN, CORINNE CHARLTON,
IRENE SPITSBERG

Value Added by Segment
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ASSESSING THE EXPORT

POTENTIAL FOR HIGH-
PERFORMANCE MATERIALS
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HIGH PERFORMANCE ALLOY DOMESTIC VALUE CHAIN
Regional Impacts
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Fe-9Cr Alloy Developmen’r
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NETL CPJ-7 and NETL JMP Steels

OPTIMIZE COMPOSITION
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DFT and CALPHAD used to
optimize alloy composition.
Simulations used to determine the
effect of alloying elements on the
formation and stability of
unwanted (Z-phase) and desired
strengthening phases (Carbides). @
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OPTIMIZE PROCESSING
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NETL's R&D 100 award winning
computational tool used to
design heat-treating cycles to
optimize the alloy’s
microstructure and properties.
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Cast and wrought forms
70 kg (150 Ib) ingots
produced (VIM, ESR)

= Formulated ESR slag chemistry

* Welding trials/studies
= Conventional NETL
= Friction Stir Welding PNNL

* Material available for

evaluation
= EPRI (John Siefert, cast alloys,

remnants of tested creep
samples)

QOutcome: New Fe-9Cr
Alloy with an Increase
Temperature Capability
of ~50° F for this
important class of

power plant steel.
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Cast Version of Alloy 740H
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Alloy (and supply chain) options for thick wall castings

Conventional casting
Non-Uniform Microstructure
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Modify the casting process for
Inconel 740H to improve its
mechanical properties in creep.

Conventional castings (open
circles) showed poor and
inconsistent creep lives.

The NETL-process (FGH) to
produced fine-grain casting o
obtain a cast product matching
the wrought alloy on the LMP
plot.

Outcome: Creep resistant cast
version of Alloy 740H.




Superalloy Development T s

Increase temperature capability and strength of superalloys. i, 252: increase the gamma prime Increase Gamma Prime

fraction/solvus to enhance >800C
mechanical properties. Obtain a gamma 1300 ) T T T

Enable increased operational temperature (efficiency) and/or reduce amount of alloy

. i 1200 ®—_ o H282|]
needed for manufacturing component (reduce cost). prove fraction/solvus at 900C equal to tha ool a2 [ ST
. . . . . . o - ~ \ -8 Q H
v’ Increasing y’ fraction/solvus in commercial Ni-based superalloys of the commercial alloy at 800C. Also & |\t "\ |
. . . looking at Alloy 263 and Nimonic 105. < i / N\ i
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strength compared to commercial superalloys. Outcome: Higher strength version of H282 with ductility.
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Grain boundary re-design of commercial alloys

Alloy 725:

The alloy is subjected to (1) NETL computationally optimized homogenization cycle and (2) high temperature (HT) 1000 . 750CTenson ]
post-TMP aging heat treatment combined with targeted elemental additions that enables the intentional = I | ]
precipitation of secondary phases (i.e., & and/or n) at the grain boundaries to increase their resistance to % ........................................... ]
deformation and damage and y’ and/or y” precipitates in the grain interior to facilitate high room and high o 800F o -
temperature yield stress and tensile strength. 5 7sof | 1
15 T T T T T v T T v T ]
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E ° ] i
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= G N = G A0 Creep Life (h) ]
T~ i bl Ry Outcome: Improvement in ]

creep life of >256% with similar
ductility from the standard alloy.
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High Entropy Alloy (HEA) Development

Design of Co-Cr-Fe-Ni-Mo HEAs

240
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solute solution strengthening in MPa
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Mo concentration in %

Stacking Fault Energy Co-Cr-Fe-Mn-Ni-Mo
calculated using first-principles density
functional theory.

The SFE of six alloys in J/m2
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Properties of NETL HEAs

Yield Stress of Co-Cr-Fe-Ni-Mo HEAs
compared to 347HFG

Creep behavior of HEAs and High
Entropy Matrix Superalloys
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Materials Issues for Supercritical CO, Power Cycles [N=]nanona
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HIGH-TEMPERATURE OXIDATION OF STEELS ¢ &% LABORATORY
AND SUPERALLOYS LINKING OXIDATION BEHAVIOR AND
. .y » MECHANICAL DEGRADATION
Effects of impurities and pressure @
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’ Oleksak, J.H. Tylczak, G.R. Holcomb, O.N. Dogan, Corrosion Science (2020).
’rg 0 — - — 3. Effect of surface finish during high temperature oxidation of steels in CO2,
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£ 0.N. Dogan, Oxidation of Metals (2019) 92 525-540.
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Oxidation of Steels: Direct-Fired sCO, Environments
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CO,+4%H,0+1%0,+S0, Time: 2500 hrs
CO,+4%H,0+1%0, suggested by NETPower

Effect of 502 |mpur|’r|es (347H)

Mass change (mg/cmz)

Determining critical Cr content required for protective
scale formo’rion
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The role of surface finish (347H)

(a) Polished surface

(b) 600 grit surface

" Copper plating

Pure CO,— repeating experiment under direct cycle environments
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Oxidation of Ni Alloys: Direct-Fired sCO, Environments  [N=|ranonat

®
The role of minor alloying elements in chromia-forming alloys Effect of pressure
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Impact of sCO, on Dissimilar Metal Welds [N=["

T L TECHNOLOGY
LABORATORY

Dissimilar Welds P91-347H weld exposed to sCO2: 550 °C and 200 bar for 1000 h.
P22-P91
P91-347H a) P91/ HAZ Interface (b) HAZ / Fusion Zone Interface
P22-Alloy 263 R |

Alloy 625-Alloy 263 B R o e

347H-Alloy 263 At Edison Welding Institute (EWI)
By Gas Tungsten Arc Welding (GTAW).

With Post Weld Heat Treatment.

. -‘ Az~ > Fiision Zorie

Oxidation and Deformation Behvaior of Dissimilar

Metal Welds in Direct sCO, (CO,+4%H,0+1%0,) 50 um | - . 50 pm
- - (d) HAZ (e) Fusion Zone
[ e B Y s B iy F5 ) 2 « 1Y "N [ ] i'._ > Y &
a1l ’3y.‘. " éulayer f“- }l"'“" f '\Cubyefk ‘;‘/“'” *
sl LG Thin Cr-rich oxide
n Cr: 0!
Alloy substrate ‘ ‘ - Alloy substrate
4 um 4 ym

U.S. DEPARTMENT OF

ENERGY




Compact Heat-Exchangers for sCO, Power Cycles
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Micro-channel HX Via Diffusion
Bonding Ni-SHEeraIon
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- stacks possessed acceptable

"~ strain localization in the bond

Transient-liquid-phase (TLP) bonding using
'Ni-P interlayers developed for Alloy 230.

Strength of the bonded stacks
was greater than 85% of base
alloy 230 yield stress. Bonded

low-cycle fatigue and creep
properties. However, plastic

region caused low tensile
and creep elongation
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Diffusion Bonding
IN-740H Sheets
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Alloy Fabrication Capabilities

TL TECHNOLOGY
For Mission Critical Applications. Scales Translate to Industrial Practice. LABORATORY

Melt Processing Capabilities
* Air Induction Melting: up to 300 Ibs

* VIM: 10, 50 and 500 lbs

* Vacuum Arc Remelt/Electro-Slag Remelt
VAR/ESR: 3 to 8 inch diameter crucibles

Thermo-Mechanical Processing

Capabilities

* Heat-treatment furnaces:1650°C, inert
atmospheres and controlled cooling.

* Press Forge: 500 Ton
* Roll mills: 2 and 4 high configurations.
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Materials Performance in Exireme Environments TL [rEchnoroey
SECERF 8

Severe Environment Corrosion/Erosion Research Facility

Aii\

Corrosion & Oxidation Laboratories

* Ultra-super-critical (USC) Steam Autoclave: Dual rated:

310 bar at 760C and 345 bar at 746C. System to control

steam chemistry (dissolved oxygen). Computer

controlled for 24/7 unattended operations.

Supercritical CO, Autoclave: rated at 800C and 275bar

Autoclaves (5000psi-250C), Flow Through Autoclaves

(5000psi-500C), Rocking Autoclave (7250psi-400C). CO,

0,, SO,, H,S. Autoclave for performing electrochemical

experiments under pressure and temperature.

* Potentiostats, Galvanostats , Electrochemical
Impedance Spectroscopy.

* Static and cyclical oxidation furnaces for 24/7
exposures to O,, H,0 vapor, CO,

* Rotary kiln furnace for evaluating refractory materials
performance in flowing slag environments under
thermal gradients in combustion atmospheres

Fracture Mechanics and Creep Laboratories

* Gas environment tailored by mixing with programmable mass flow controllers. * Screw driven & servo-hydraulic frames for strength and

Available gases: CO, CO,, CH,, H,, H,S, SO,, HCl, 0,, N,, He, air, H,O vapor. fatigue (max. load 1000 kn, 1600C, air). Constant stress
& strain load frames for creep testing (1000C, air, CO,)

.| . Alarm System

e — . /
g | [ o a4 DETECTION A0 ENERGOICY SHUT-DOWN
v -

{ 5t

_/_Erosion-Cormrosion of materials for

Safety Integrated System to allow for safe 24/7 unattended operations.

Gas flow rates: 5-1600 ml/min (depending on gas).
* Maximum temperature: furnaces: 1600C; erosion rig: 750C




° N: NATIONAL
NETL Computational Resources =lenercy
Accelerating Technology Development — accessed at ALL NETL research sites TL LABORATORY

Center for Computational Science and Engineering
JOULE 2.0

o AT 3.6 petaflops JOULE is the 10™ fastest supercomputer within DOE
National Laboratories.

» This provides NEIL and partners with high-performance
computational power 1o solve challenges in energy.

Center for Artificial Intelligence and Machine Learning
WATT

» Links 104 GPUs with 16 petabytes of storage to provide
unparalleled opportunities for the use of Al/ML to enable scientific
discovery and R&D acceleration.

#2 % U.S. DEPARTMENT OF




Comuiqhonql Materials Capabilities

Multiscale Modelling

2/ i "

Classical MD & Equilibrium
and Kinetic Monte Carlo
Simulationsin
Various Statistical Ensembles

-

MK, Microstructure

Phase Evolution
Continuum Modeling

- INATIONAL

== |[ENERGY
TECHNOLOGY
LABORATORY

atPro, FactSage‘
ys




Impact & Innovation: Structural Materials Team |[N=jev

_ . . i T L [FESHNoLoGy
Enabling Advanced Energy Systems and Advancing the Fossil Energy Mission LABORATORY

e O

NETL's Computational Tool to

Specify Alloy Homogenization
Enabling technology for Advanced
Ultra-Super Critical Steam (A-USC)
Turbines.

Specified heat-treatments:

* Special Metals: ESR/VAR
10,000 Ib superalloy mgot

* GE: 2 actual size :
cast valve body for |
an A-USC turbine

18,500 Ib o empeizd
) L0 _tomomoree) | * Rare Earth Element
supe raIon casting. LM = TIKI(CI20]+0g(t) Extraction from Coal

High-Performance Materials (Cross-Cutting Research) and Gasification Slags

Through Additive Fusion
Materials Performance Assessment for Reliability Technology, US Patent:

S/N behavior of candidate riser alloys | 1 Effect of H,S on FCGR of Alloys for UDW
with SwRI | | W|th DNV & Oregon State Unlv 10,358,649 B2

NETL Developed Refractory Brick

* Licensed to Harbison-Walker

e Commercially produced as
Aurex 95P.

e Used in nearly every slagging
gasifier world-wide.

* NETL technology doubled

refractory service life.
High-Performance Materials (Cross-Cutting Research) & Gasification

g
Stress (MPa) 2
g

Stress (ksi)

3
3

Materials Recovery & Recycling Advanced Membrane-Based
: Electrochemical Sensors

* Increase in pipeline efficiency & safety.
* Real time simultaneous monitoring of natural gas
environment and pipeline corrosion.

S

* Carbothermal Reduction
of Gasification Slags to
Recover Nickel and

S oD Vanadium, US Patent: ’

S . 10,323,298 B2

e e Rare Earth Elements, Gasification, & TCF

%s.

LR A
~'..'-' .

e

A. etea
. o s gy

daldN (inicycle)

Natural Gas Inrdstruure (idstream)




QUESTIONS ?

CONTACTS

Jeffrey Hawk

Technical Portfolio Lead - Advanced Alloy
Development FWP

Structural Materials Team

Office: (541) 918-4404

Email: Jeffrey.Hawk@netl.doe.gov

Marisa Arnold-Stuart

Supervisor

Structural Materials Team

Office: (541) 967-5809

Mobile: (541) 979-1421

Email: Marisa.Arnold@netl.doe.gov

Travis Shultz

Supervisor

Energy Process Analysis Team
Office: (304) 285-1370

Mobile: (412) 302-5874

Email: Travis.Shultz@netl.doe.gov

David Alman

Associate Director,

Materials Engineering & Manufacturing
Office: (541) 967-5885

Mobile: (541) 979-7007

Email: David.Alman@netl.doe.gov
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