NETL Research & Innovation Center’s Advanced Alloy Development Research

Jeffrey Hawk, Edward Argetsinger, Tianle Cheng, Casey Carney, Corinne Charlton, Christa Court, Martin Detrois, Omer Dogan, Michael Gao, Volker Heydemann, Gordon Holcomb*, Paul Jablonski, Tau Liu, Joseph Mendenhall, Paul Myles, Richard Oleksak, Christopher Powell, Kyle Rozman, Erik Shuster, Irene Spitsberg, Joseph Tylczak, Youhai Wen, Margaret Ziomek-Moroz, Marisa Arnold-Stuart, Travis Shultz, and David Alman

September 29, 2020

*retired
Acknowledgement

• This work was performed in support of the US Department of Energy’s Office or Fossil Energy Crosscutting Technology Research Program, Robert Schrecengost DOE-FE Program Manager and Briggs White NETL Technology Manager.

• The Research was executed through the NETL Research and Innovation Center’s Advanced Alloy Development Field Work Proposal.

Disclaimer

• This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Advanced Energy Systems: Materials at Extremes

Structural Materials Development

Materials Challenges:

- Higher Temperatures, Higher Pressures, Corrosion & Oxidation → Extreme Environments
- Large Components → Manufacturability
- Long Service Life Span >100,000 hrs → Durability
- Penetration of Renewable → Cycling Operational Conditions

Technology Enabler: Affordable, Durable and Qualified Structural Materials for Harsh Service Life.
The Advanced Alloy Development (AAD) Field Work Proposal (FWP) supports the mission, goals, and objectives of the DOE-FE/NETL High Performance Materials Program by developing affordable, durable, cost-effective, heat-resistant alloys and tools necessary for improving the existing fleet of Fossil Energy (FE) power plants, and enabling advanced FE systems, such as advanced ultra-supercritical (A-USC) and supercritical carbon dioxide (sCO₂) power cycles.

Scope

Mission DOE-FE/NETL High Performance Materials Program: Characterize, produce, certify cost-effective alloys and high-performance materials suitable for extreme environments found in coal power generation to support existing and new plants.

AAD-FWP Research

- Identify supply chain issues and performance/cost benefits
- Develop alternative cast and wrought alloys for A-USC and sCO₂ application
- Increase temperature capabilities of steels, Ni alloys
- Improve melt processing of advanced alloys
- Assess, predict, and improve alloy cyclic & environmental performance
- Materials Performance under direct sCO₂ power cycles
- Enable manufacture of compact heat-exchangers for sCO₂ power cycles.
Techno-Economic & Market Assessments

Research Guidance and Direction (Systems Engineering & Analysis)

• High Performance Alloy Applications In Adjacent Markets
• Understanding the Supply Chain of Advanced Alloys
• Benefits of Advanced Materials for Boiler Tubes
• Export Potential for High-Performance Materials Study
• GADS Failures subsets analysis for boiler tubes, turbine, and BOP
Fe-9Cr Alloy Development

NETL CPJ-7 and NETL JMP Steels

OPTIMIZE COMPOSITION

- **Z-phase (CrNb)**
- **C$_2$Cr$_{23}$ Carbide**

DFT and CALPHAD used to optimize alloy composition. Simulations used to determine the effect of alloying elements on the formation and stability of unwanted (Z-phase) and desired strengthening phases (Carbides).

OPTIMIZE PROCESSING

NETL's R&D 100 award winning computational tool used to design heat-treating cycles to optimize the alloy’s microstructure and properties.

- **Creep Rupture: 648C**
- **COST-E vs. NETL-CPJ7**

- **Stress (ksi)**
- **Time to Failure (h)**

Outcome: New Fe-9Cr Alloy with an Increase Temperature Capability of ~50$^\circ$ F for this important class of power plant steel.

- **Cast and wrought forms**
- **70 kg (150 lb) ingots produced (VIM, ESR)**
 - Formulated ESR slag chemistry
- **Welding trials/studies**
 - Conventional NETL
 - Friction Stir Welding PNNL
- **Material available for evaluation**
 - EPRI (John Siefert, cast alloys, remnants of tested creep samples)

Cast Version of Alloy 740H

Alloy (and supply chain) options for thick wall castings

- **Conventional casting**
- **Non-Uniform Microstructure**

Conventional castings (open circles) showed poor and inconsistent creep lives.

The NETL-process (FGH) to produce fine-grain casting o obtain a cast product matching the wrought alloy on the LMP plot.

Outcome: Creep resistant cast version of Alloy 740H.

Superalloy Development

Increase temperature capability and strength of superalloys.

Enable increased operational temperature (efficiency) and/or reduce amount of alloy needed for manufacturing component (reduce cost).
✓ Increasing γ' fraction/solvus in commercial Ni-based superalloys
✓ Grain boundary re-design for Ni-based superalloys (Alloy 725)
✓ High entropy matrix Ni-based superalloy

Re-design gamma matrix

High entropy matrix Ni-based superalloys

Outcome: More stable gamma matrix Increased strength compared to commercial superalloys.

Alloy 282: Increase the gamma prime fraction/solvus to enhance >800°C mechanical properties. Obtain a gamma prime fraction/solvus at 900°C equal to that of the commercial alloy at 800°C. Also looking at Alloy 263 and Nimonic 105.

Outcome: Higher strength version of H282 with ductility.

Superalloy Development

Grain boundary re-design of commercial alloys

Alloy 725:
The alloy is subjected to (1) **NETL computationally optimized homogenization cycle** and (2) **high temperature (HT) post-TMP aging heat treatment** combined with **targeted elemental additions** that enables the intentional precipitation of secondary phases (i.e., δ and/or η) at the grain boundaries to increase their resistance to deformation and damage and γ’ and/or γ'' precipitates in the grain interior to facilitate high room and high temperature yield stress and tensile strength.

<table>
<thead>
<tr>
<th>Standard alloy</th>
<th>E HT</th>
<th>F HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 100h 800C</td>
<td>E1 100h 800C</td>
<td>F2 100h 800C</td>
</tr>
</tbody>
</table>

Outcome: Improvement in creep life of >256% with similar ductility from the standard alloy.
High Entropy Alloy (HEA) Development

Design of Co-Cr-Fe-Ni-Mo HEAs

Properties of NETL HEAs

Corrosion of Co-Cr-Fe-Ni-Mo (A36) HEA compared to Hastelloy C276 and Multimet

Oxidation at 850C of NETL HEAs compared to Alloy 2828. Similar behavior observed at 750C

Materials Issues for Supercritical CO₂ Power Cycles

HIGH-TEMPERATURE OXIDATION OF STEELS AND SUPERALLOYS

Effects of impurities and pressure

- No SO₂
- 0.1% SO₂

LOW-TEMPERATURE CORROSION

Identifying low-cost steels resistant to acidic condensates

OXIDATION AND PERFORMANCE OF JOINED STRUCTURES AND MANUFACTURE OF COMPACT HEAT-EXCHANGERS

SELECT RECENT PUBLICATIONS

Oxidation of Steels: Direct-Fired sCO₂ Environments

CO₂+4%H₂O+1%O₂+SO₂ Time: 2500 hrs
CO₂+4%H₂O+1%O₂ suggested by NETPower

Determining critical Cr content required for protective scale formation

Effect of SO₂ impurities (347H)

The role of surface finish (347H)

Pure CO₂ – repeating experiment under direct cycle environments
Oxidation of Ni Alloys: Direct-Fired sCO₂ Environments

The role of minor alloying elements in chromia-forming alloys

[Graphs showing mass change vs. content for various elements (Cr, Mn, Si, Al, Ti) under different conditions (no SO₂, 0.1% SO₂, fits omitting alloy 263).]

Effect of pressure

CO₂+4%H₂O+1%O₂+SO₂
750°C-2500 hrs (2500 hrs in progress)

Effect of SO₂ impurities

[Graphs showing mass change at different temperatures (600°C, 650°C, 700°C, 750°C, 800°C) with and without SO₂.]

CO₂+4%H₂O+1%O₂ suggested by NETPower
Impact of sCO\textsubscript{2} on Dissimilar Metal Welds

Dissimilar Welds
- P22-P91
- P91-347H
- P22-Alloy 263
- Alloy 625-Alloy 263
- 347H-Alloy 263

At Edison Welding Institute (EWI)
By Gas Tungsten Arc Welding (GTAW).
With Post Weld Heat Treatment.

Oxidation and Deformation Behavior of Dissimilar Metal Welds in Direct sCO\textsubscript{2} (CO\textsubscript{2}+4\%H\textsubscript{2}O+1\%O\textsubscript{2})

P91-347H weld exposed to sCO\textsubscript{2}: 550 °C and 200 bar for 1000 h.

(a) P91 / HAZ Interface
(b) HAZ / Fusion Zone Interface
(c) P91
(d) HAZ
(e) Fusion Zone

Exposure to CO\textsubscript{2}+4\%H\textsubscript{2}O+1\%O\textsubscript{2} (DF4) for 1000h
Compact Heat-Exchangers for sCO$_2$ Power Cycles

Micro-channel HX Via Diffusion Bonding Ni-Superalloy Sheets

Transient-liquid-phase (TLP) bonding using Ni-P interlayers developed for Alloy 230.

Strength of the bonded stacks was greater than 85% of base alloy 230 yield stress. Bonded stacks possessed acceptable low-cycle fatigue and creep properties. However, plastic strain localization in the bond region caused low tensile and creep elongation.

Oxidation in sCO$_2$

NETL Materials Performance Simulations

Gamma Prime Coarsening in H282

Oxide Scale Spallation

Spallation due to:
- Temperature (Different thermal expansion)
- Oxide growth strain with geometric constraint
- Different creep rate between oxide and metal

Creep modeling of polycrystalline with/without GBS

LCF modeling

3. Fei Xue et al., “Stress analysis of the steam-side oxide of boiler tubes: contributions from thermal strain, interface roughness, creep, and oxide growth,” *Oxidation of Metals*, accepted for publication, 2020

Alloy

<table>
<thead>
<tr>
<th></th>
<th>Ni</th>
<th>Cr</th>
<th>Co</th>
<th>Mo</th>
<th>Ti</th>
<th>Al</th>
<th>Ti/Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>18.5-20.5</td>
<td>9.11</td>
<td>8.9</td>
<td>1.9-2.3</td>
<td>1.38-1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H282-B</td>
<td>19.22</td>
<td>9.86</td>
<td>8.49</td>
<td>2.22</td>
<td>1.27</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>H282-C</td>
<td>19.19</td>
<td>9.85</td>
<td>8.50</td>
<td>1.94</td>
<td>1.54</td>
<td>1.26</td>
<td></td>
</tr>
</tbody>
</table>

After 5 years of operation

- ε_{θ}
- ε_{z}
- ε_{r}

Evolution of stresses

- σ_{ox} (MPa)

U.S. DEPARTMENT OF ENERGY
Alloy Fabrication Capabilities
For Mission Critical Applications. Scales Translate to Industrial Practice.

Melt Processing Capabilities
• Air Induction Melting: up to 300 lbs
• VIM: 10, 50 and 500 lbs
• Vacuum Arc Remelt/Electro-Slag Remelt
 VAR/ESR: 3 to 8 inch diameter crucibles

Thermo-Mechanical Processing Capabilities
• Heat-treatment furnaces: 1650°C, inert atmospheres and controlled cooling.
• Press Forge: 500 Ton
• Roll mills: 2 and 4 high configurations.
Materials Performance in Extreme Environments

SECERF
Severe Environment Corrosion/Erosion Research Facility

- **Corrosion & Oxidation Laboratories**
 - Ultra-super-critical (USC) Steam Autoclave: Dual rated: 310 bar at 760C and 345 bar at 746C. System to control steam chemistry (dissolved oxygen). Computer controlled for 24/7 unattended operations.
 - Supercritical CO₂ Autoclave: rated at 800C and 275bar
 - Autoclaves (5000psi-250°C), Flow Through Autoclaves (5000psi-500°C), Rocking Autoclave (7250psi-400°C). CO₂, O₂, SO₂, H₂S. Autoclave for performing electrochemical experiments under pressure and temperature.
 - Potentiostats, Galvanostats, Electrochemical Impedance Spectroscopy.
 - Static and cyclical oxidation furnaces for 24/7 exposures to O₂, H₂O vapor, CO₂
 - Rotary kiln furnace for evaluating refractory materials performance in flowing slag environments under thermal gradients in combustion atmospheres

- **Fracture Mechanics and Creep Laboratories**
 - Screw driven & servo-hydraulic frames for strength and fatigue (max. load 1000 kn, 1600C, air). Constant stress & strain load frames for creep testing (1000C, air, CO₂)

• Safety Integrated System to allow for safe 24/7 unattended operations.
• Gas environment tailored by mixing with programmable mass flow controllers.
• Available gases: CO, CO₂, CH₄, H₂, H₂S, SO₂, HCl, O₂, N₂, He, air, H₂O vapor.
• Gas flow rates: 5-1600 ml/min (depending on gas).
• Maximum temperature: furnaces: 1600C; erosion rig: 750C
Center for Computational Science and Engineering

JOULE 2.0

- At **3.6 petaflops** JOULE is the **10th fastest** supercomputer within DOE National Laboratories.
- This provides NETL and partners with high-performance computational power to solve challenges in energy.

Center for Artificial Intelligence and Machine Learning

WATT

- Links **104 GPUs** with **16 petabytes** of storage to provide unparalleled opportunities for the use of AI/ML to enable scientific discovery and R&D acceleration.
Computational Materials Capabilities

Multiscale Modelling

- Gaussian, Molpro, Turbomole, Q-Chem, Dmol
- VASP, Wien03, Dmol3, Siesta, PWSCF, CP2K
- NAMD, GULP, LAMMPS, Compass, ReaxFF, MD/MC

- Microkinetics, Phase-Field, Micress, COMSOL, CALPHAD, ThermoCalc, CompuTherm, JMatPro, FactSage, DICTRA, FactSage, Ansys

Data Visualization, Analysis & Processing

- DFT Calculations for Systems with 1D/2D/3D PBC
- Classical MD & Equilibrium and Kinetic Monte Carlo Simulations in Various Statistical Ensembles

Data Archiving and Security

- Quantum Mechanics Based Simulation Capability
- Classical Mechanics Based Simulation Capability
- Meso-Scale Based Simulation Capability
- Ab Initio Molecular Orbital Calculations
- Management
NETL’s Computational Tool to Specify Alloy Homogenization

Specified heat-treatments:
- **Special Metals:** ESR/VAR 10,000 lb superalloy ingot.
- **GE:** ½ actual size cast valve body for an A-USC turbine 18,500 lb superalloy casting.

NETL Developed Refractory Brick

- Licensed to Harbison-Walker
- Commercially produced as Aurex 95P.
- Used in nearly every slagging gasifier world-wide.
- NETL technology doubled refractory service life.

Materials Recovery & Recycling

- **Carbothermal Reduction of Gasification Slags to Recover Nickel and Vanadium,** US Patent: 10,323,298 B2

Advanced Membrane-Based Electrochemical Sensors

- Increase in pipeline efficiency & safety.
- Real time simultaneous monitoring of natural gas environment and pipeline corrosion.

Materials Performance Assessment for Reliability

- Off-Shore
QUESTIONS?

CONTACTS

Jeffrey Hawk
Technical Portfolio Lead - Advanced Alloy Development FWP
Structural Materials Team
Office: (541) 918-4404
Email: Jeffrey.Hawk@netl.doe.gov

Marisa Arnold-Stuart
Supervisor
Structural Materials Team
Office: (541) 967-5809
Mobile: (541) 979-1421
Email: Marisa.Arnold@netl.doe.gov

Travis Shultz
Supervisor
Energy Process Analysis Team
Office: (304) 285-1370
Mobile: (412) 302-5874
Email: Travis.Shultz@netl.doe.gov

David Alman
Associate Director,
Materials Engineering & Manufacturing
Office: (541) 967-5885
Mobile: (541) 979-7007
Email: David.Alman@netl.doe.gov