Carbon Utilization Program

Joseph Stoffa, PhD Technology Manager

Carbon Utilization Technology Areas

NATIONAL ERG TECHNOLOGY ABORATORY

Industrial

Waste Heat

Solar-Heating Or Photo-driven

Wind-Electric

Methane

Mineralization of

Catalyst

Methanol

Carbon Utilization Program R&D Areas

2

Goals and Objectives

Carbon Utilization Program

Fossil Energy 2018-2022 Strategic Vision

FE Strategic Goal

• Develop secure and affordable fossil energy technologies to realize the full value of domestic energy resources

Objective

• Develop technologies to maximize the value from fossil energy resources, including their production and use

Sub-Objective

• Utilize CO₂ or coal to produce valuable products, including chemicals, fuels, or high-value material

Challenges of Carbon Utilization

- Thermodynamic stability of CO₂
- Electricity prices are rarely negative/free
- Rigorous, transparent and standard Life Cycle Analysis (LCA)
- Contaminants, impurities, and variations in captured CO₂ or flue gas

Sources of Anthropogenic CO₂

CO₂ Sources for Carbon Utilization

Industrial Facilities (e.g. cement kilns ~22% CO₂)

ATIONAL

HNOLOGY

Mineralization into Inorganic Materials

Program Focus Area

- R&D Activities and Challenges:
 - Controlling and accelerating carbonate reactions
 - Optimizing process design
 - Characterizing and accepting new material formulations
 - Scaling improving CO₂ uptake

Carbon Uptake Using Algae

Program Focus Area

- R&D Activities
 - Improving CO₂ capture, transportation, uptake and conversion into high valued bioproducts.
 - Developing novel reactor and raceway designs, dewatering methods and genomics

• Challenges

- Efficiently capturing, transporting, and releasing of CO₂into algal media
- Developing energy efficient dewatering techniques
- Discovering/developing algal strains that grow well in the presence of SO_x and NO_x
- Improving utilization and biomass productivity

Carbon Utilization Program Budget

U.S. DEPARTMENT OF

Carbon Utilization (\$M)		
FY 18 Enacted	FY 19 Enacted	FY 20 Enacted
\$12	\$12	\$21

Office of Fossil Energy 2018-2022 Strategic Vision:

"Utilize CO₂ or coal to produce valuable products, including chemicals, fuels, or highvalue materials"

Carbon Utilization Projects

https://netl.doe.gov/coal/carbon-utilization

Conversion into Fuels and Chemicals CO₂ Uptake (Algae) **Mineralization into Inorganic Materials**

Active Projects

NETL-RIC: Carbon Utilization R&D

Primary Research Areas:

- Catalytic conversion of CO₂ into industrially relevant chemicals
- Electro-microbial CO₂ transformation for fine chemicals production
- Utilization of CO₂ streams for production of structural materials
- Lifecycle and market assessment studies

Key Successes:

- Reducing precious metal content in catalysts while maintaining performance
- Development of Biological Electro-Synthesis Technologies (BEST)
- Improving cement properties with CO₂

Gold-Copper Nanocatalysts

<----▶

Retained performance ~50% reduction in gold

Microwave-Assisted Thermal CO₂ Conversion

- Mixed metal oxides absorb microwaves generating heat
- Opening opportunities for CO₂ utilization pathways that traditionally require high temperatures

https://www.netl.doe.gov/sites/default/files/netl-file/D-Kauffman-NETL-Catalytic-Conversion-of-CO2.pdf https://netl.doe.gov/sites/default/files/2019-03/USE-REUSE-25-Catalytic-Conversion-of-CO2-20190114.pdf Carbon Utilization Technology Development Schedule

FOA 2186: Novel Concepts for the Utilization of Carbon Dioxide from Utility and Industrial Sources

Areas of Interests: Issued February 2020

AOI 1 – Synthesis of Value-Added Organic Products

Proof of concept and validation in laboratory environment

AOI 2 – Production of Inorganic Materials: Solid carbon products

Field scale testing and development

AOI 3 – Integrated CO₂ Capture with Algae

Bench-scale development and testing Address CO₂ capture, conditioning, transport and transfer to the algae medium

AOI 4 – Production of Inorganic Materials: Maximizing Uptake in Concrete and Cement

Field scale testing and development

Federal Funding(\$ Million)

- AOI 1: Fuels & Chemicals \$2.0
 AOI 2: Solid Carbon
 AOI 3: Algae \$6.0
- AOI 4: Mineralization

AOI 1

AOI 2

AOI 3

AOI 4

2

\$7.0

\$2.0

Carbon Utilization Accomplishments

NATIONAL ENERGY TECHNOLOGY LABORATORY

Reducing the cost of captured carbon and putting it to work for America

CO₂ UTILIZATION BOOSTED BY MICROWAVE-ASSISTED CATALYST Efficient and economical microwave-assisted catalysts provide groundbreaking solutions to carbon utilization challenges

NOVEL CATALYSTS ENHANCE CONVERSION OF CO₂ INTO HIGH-VALUE CHEMICALS

Innovative catalysts convert waste CO₂ into higher-value, industrially relevant chemicals and materials and eliminates expensive precious metals

EMISSIONS REDUCTION PATH FOR COAL INDUSTRY IN CARBON-NEGATIVE CONCRETE REINFORCEMENT Utilizing CO₂ and industrial byproducts to create CO₂negative upcycled concrete that performs as well, or better, than traditional construction materials

Program Summary

Program Goals

- Utilize waste carbon streams to produce valuable products
- Reduce emissions (LCA)

Program Pathways

- Conversion to chemicals and fuels
- Mineralization into inorganic materials
- Uptake using Algae

Near-term/Mid-term Objectives

- Increase catalyst yield, selectivity, and conversion
- Increase CO2 uptake and conversion in mineralization products
- Improve CO2 uptake and conversion utilizing algae technologies

Program Accomplishments

• Improved products, catalysts, designs and processes

Carbon Utilization Contacts and Resources

NETL Website

https://netl.doe.gov/coal/carbon-utilization

Amishi Kumar DOE/FE Program Manager Amishi. Kumar@hq.doe.gov

Joseph Stoff NETL Technology Manager Joseph.Stoffa.netl.doe.gov

