

A Scalable Process for Upcycling Carbon Dioxide (CO₂) and Coal Combustion Residues into Construction Products

Project Number: DE-FE0031718 Project Manager: Andrew P. Jones

Presented by: Prof. Gaurav N. Sant

Laboratory for the Chemistry of Construction Materials (LC²) UCLA Samueli School of Engineering

Prepared for: DOE-NETL Virtual Integrated Project Review Meeting - Carbon Utilization October 22nd, 2020

Presentation

outline

Project overview

¥ * *

Technology section

Technical approach/project scope

Progress and current status of project

Project budget

The project funding profile over its two-year duration.			The project's spend plan on a monthly basis.						
			Month	FY 2019	FY 2020				
	Gov't Share Cost Share		January	\$5,496	\$222,097				
			February	\$711	\$56,516				
	¢1 500 000	¢160 265	March	\$49,494	\$55,667				
UCLA	φ1,500,000	Φ400,20 5	April	\$2,003	\$66,597				
			Мау	\$107,149	\$225,519				
Susteon Inc.	\$300,000	\$0	June	\$32,632	\$76,753				
			July	\$39,475	\$221,966				
			August	\$52,411	\$128,006				
Total (\$)	\$1,800,000	\$460,265	September	\$48,326	\$206,040				
			October	\$56,317	\$24,878				
			November	\$32,785	\$24,878				
Cost Share (%)		20.36%	December	\$39,406	\$24,878				
			Total (\$)	\$466,207	\$1,333,793				

Project dates and participants

- Project performance dates:
 01/01/2019 12/31/2020
- Participants:
 - PI: Gaurav N. Sant
 - Co-PI: Richard Kaner
 - Project Scientists: Iman
 Mehdipour and Gabriel Falzone
 - Susteon Inc.

Overall project objectives

- Upcycle industrial wastes and CO₂ Produce low-carbon CO₂Concrete products from coal combustion residues, flue gas CO₂, and low-grade waste heat
- **System design** Develop operational procedures to inform scale-up process design of a "bolt-on" CO₂ mineralization system at coal-fired power plants
- Field test CO₂ processing system Fabricate and demonstrate a unique CO₂ mineralization system to consume ~100 kg of CO₂ per day from coal-fired flue gas
- **Product compliance** Assess and verify product compliance to construction standards; demonstrate potential utilization in construction applications

Project overview

Presentation outline

Technology section

Technical approach/project scope

Progress and current status of project

The problem at hand – CO₂ emissions from cement/concrete

- The most-widely used material (for good reason)
 - Over 20 billion tons of concrete are produced per year
 - Cheap, abundant and resilient
- Cement production emits approximately 10 % of global CO₂ emissions
 - Cement is the most emissions-intensive component of concrete, despite being only 15% of its mass
 - ~ 0.9 tons CO₂ emitted per ton cement
 - ~ 4 billion tons cement produced per year
- Emissions from calcination are the unavoidable majority

https://www.statista.com/statistics/373845/global-cementproduction-forecast/

The need for CO₂ utilization within the concrete/construction sector

Samueli

School of Engineering

UCLA

 Large gap in emissions reductions of cement sector needs to be filled by CO₂ management

Laboratory for the Chemistry

of Construction Materials

- Geologic sequestration is costly and difficult to achieve
- Cementation agents and aggregates could present a gigaton-scale sink for CO₂ emissions

The lime cycle enables scalable CO₂ mineralization

 Lime mortars (based on calcium hydroxide / portlandite: Ca(OH)₂) are historically proven cementation agents

Advantages of this approach

- Portlandite offers high CO₂ uptake, low cost
- Reduced processing temperatures vis-à-vis OPC
- No carbon capture step needed (directly use flue gas borne CO₂)
- Mineralization is thermodynamically downhill
- Maintain reaction temperature and pressure similar to native flue gas conditions

The Challenge: Accelerate CO₂ mineralization reaction rates while minimizing energy inputs

Process flow for producing low-carbon concrete by CO₂ mineralization

Slide 10 of 35

Demonstration of *alpha*-prototype CO₂ mineralization system

- Alpha-pilot used simulated natural gas and coal flue gas (7% - 18% CO₂) input streams
- Process designed for wet-cast concrete cylinders (water/ binder mass ratio, w/b ≈ 0.5)
- Input 200 kg CO₂ within 24 h, 65 % of which was taken up into concrete products
- Embedded 0.2 g of CO₂ / g of reactant in concrete product, which induced strengthening

Presentation

outline

Project overview

Technology section

Technical approach/project scope

Progress and current status of project

Scope of work and project success criteria

Project tasks:

- Task 1.0 Project Management and Planning
- Task 2.0 Material specifications, acceptance criteria, and component performance
- Task 3.0 Bench-scale studies to acquire critical data for system design
- Task 4.0 Design and fabrication of modular CO₂ processing system
- Task 5.0 Commissioning and trial operation of the CO₂Concrete system
- Task 6.0 Field demonstration of CO₂Concrete carbonation system
- Task 7.0 Design and scalability analysis for commercial-scale CO₂Concrete system
- Task 8.0 Techno-economic analysis and life cycle assessment

Key project success criteria:

- CO₂Concrete formulations demonstrate CO₂ uptake between 0.05 to 0.50 g CO₂/ g reactant and compressive strength > 13.8 MPa for hollow-core block applications
- Field testing demonstrates 50 to 90 % CO₂ utilization efficiency using real flue gas at host site
- CO₂Concrete produced has a lifecycle footprint that is > 25 % smaller than OPC concrete of equal performance

Project milestones

Task #	Milestone description	Planned completion	Verification method
1	Updated Project Management Plan (PMP) submitted	1/31/19	PMP file
2	Reactants demonstrating theoretical carbonation potential in excess of 0.05 g CO_2 / g reactant will be sourced and characterized for use in carbonation experiments	3/1/19	Oxide composition data from XRF will be used to calculate the theoretical carbonation potential. Results reported in the quarterly RPPR.
1	Project kickoff meeting convened	3/31/19	Presentation file
2	Reactant mixture formulations identified that demonstrate CO_2 uptake between 0.05 to 0.50 g CO_2 / g reactant	4/30/19	Thermogravimetric analysis will establish CO_2 uptake achieved during bench scale carbonation experiments of different reactants performed at fixed process conditions. Results reported in the quarterly RPPR.
3	Performance of CO ₂ Concrete components produced in bench-scale reactor meets applicable product standards (e.g., compressive strength > 13.8 MPa for concrete block, ASTM C90)	6/29/19	Laboratory testing of compressive strength following ASTM C90 procedures; performance data for various mixtures and processing conditions will be compiled. Results reported in the quarterly RPPR.

Project milestones (cont.)

Task #	Milestone description	Planned completion	Verification method
8	Technology Maturation Plan (TMP) submitted	6/30/19	TMP file
3	Establish process conditions that maximize rate of CO_2 uptake (in excess of 5.8 x 10 ⁻⁷ g CO_2 / g reactant / second)	8/28/19	Thermogravimetric analysis will establish CO ₂ uptake kinetics during bench-scale carbonation experiments of reactants performed under varying process conditions. Results reported in the quarterly RPPR.
4	Beta reactor system performance maintained within 20% of set point during 24-hour duration of operation using simulated flue gas	6/23/20	In-line instrumentation will monitor and record performance data (i.e., temperature, relative humidity) which will be analyzed and compiled. Results reported in the quarterly RPPR.
4	Bench-scale unit fabricated and factory- acceptable test completed	9/21/20	Description and photographs provided in the quarterly RPPR.

Project milestones (cont.)

Task #	Milestone description	Verification method						
2	Performance of CO_2C oncrete components produced in beta system using simulated flue gas meets applicable product standards (e.g., compressive strength > 13.8 MPa for concrete block, ASTM C90); CO_2 uptake in excess of 0.05 g CO_2 / g reactant is achieved within 24 hours of processing	9/21/20	Laboratory testing of compressive strength following ASTM C90 procedures; performance data for various mixtures and processing conditions will be compiled. Results reported in the quarterly RPPR.					
6	Host Site Agreement obtained (NCCC)	9/21/20	Host Site Agreement submitted to DOE/NETL					
6	Beta reactor system performance maintained within 20% of set point during 24-hour duration of operation using real flue gas at host site	11/1/20	In-line instrumentation will monitor and record performance data (i.e., temperature, relative humidity) which will be analyzed and compiled. Results reported in the quarterly RPPR.					

Project milestones (cont.)

Samueli

School of Engineering

Task #	Milestone description	Planned completion	Verification method
2	Performance of $CO_2Concrete$ components produced in beta system using real flue gas at host site meets applicable product standards (e.g., compressive strength > 13.8 MPa for concrete block, ASTM C90); CO_2 uptake in excess of 0.05 g CO_2 / g reactant is achieved within 24 hours of processing.	12/31/20	Laboratory testing of compressive strength following ASTM C90 procedures; performance data for various mixtures and processing conditions will be compiled. Results reported in the quarterly RPPR.
8	Lifecycle analysis of $CO_2Concrete$ components demonstrates embodied CO_2 intensity at least 25% less than conventional concrete products	12/31/20	LCA will be performed using openLCA or similar program in accordance with relevant product category rules and compiled into a report that describes the results and methodology (MS Word file). Results reported in the LCA Topical Report.
8	Techno-Economic Analysis topical report completed	12/31/20	Topical Report and summary in Final Report
8	Life Cycle Analysis topical report completed	12/31/20	Topical Report and summary in Final Report
8	Technology Gap Analysis topical report completed	12/31/20	Topical Report and summary in Final Report
	DOE-NETL Virtual Integrated Pr	oject Review Meetin	ng - Carbon Utilization

Slide 17 of 35

Risk management approach

- Close monitoring of scientific/financial aspects by PI and a project manager
- *Risk register* to help in the identification and mitigation of risks
- A detailed risk register is provided in the project management plan
- Probabilities and impact classifications are based on current understanding of the readiness of the technology and the team's competencies
- The risks with highest risk scores (probability × impact) are discussed in the following slides

Project risks

Samueli

School of Engineering

Description of Risk	Probability	Impact	Risk Management Mitigation and Response Strategies
Budget shortfalls	Moderate	High	Closely monitor project costs and scope and set spending priorities based on timelines and milestones. Conduct periodic (weekly) meetings with team and utilize detailed task tracking application.
Integration issues (e.g., connection of system to host site, control of flue gas into system)	Moderate	High	Get sign-off on integration strategy from host site operators in design reviews; develop and discuss operational plan
Insufficient product storage and/or delayed product transportation	Moderate	Moderate	Develop strategy for on-site product storage including transportation schedule; identify secondary off-site storage near host site

Project risks (cont.)

Description of Risk	Probability	Impact	Risk Management Mitigation and Response Strategies
Environmental permitting	Moderate	High	Begin permitting discussions early in the project's lifecycle to fully understand permitting requirement and timing
Control of flue gas exhaust and fugitive dust	Moderate	Moderate	Provide proper engineering controls to mitigate exposure to dust/flue gas in full compliance with State and Federal requirements

Presentation

outline

Project overview

1111 1111

Technology section

Technical approach/project scope

Progress and current status of project

Portlandite carbonates at dilute CO₂ concentrations

- T and [CO₂] do not affect extent of reaction
- Carbonation is near-complete within 24 h
- Reaction kinetics are largely independent of CO₂ concentration for flue gas concentrations (≥ 2 %)
- Activation energy is rather low: Initial surface reaction (3 kJ/mol) and (22 kJ/mo when transport barriers may form
- **The Significance:** Pressurization, CO₂ enrichment, or significant heating is not required for portlandite carbonation

How water affects the extent of carbonation of Ca(OH)₂

Samueli

School of Engineering

UCLA

 Minimal carbonation occurs in dry CO₂ gas

Laboratory for the Chemistry

of Construction Materials

- Dissolution-precipitation pathway at higher RH allows higher extent of conversion
- "Stepped-RH" experiments revealed no surficial passivation impact
 - Conversion limit of portlandite is dictated by the RH of the CO₂ stream in immediate contact – and independent of prior history/processing/exposure conditions

Saturation's effect on CO₂ mineralization of monoliths

- Unlike particles, CO₂ diffusion through pore structure limits reaction rates; especially in water-saturated pores
- $S_w \approx 0.1-0.2$: critical level for CO₂ uptak
 - Below this level, carbonation is waterlimited
- Reaction kinetics scale with the body's moisture diffusivity
 - Similar dependence regardless of the forming method (wet-cast vs. dry-cast)
 - Enhanced kinetics in dry-cast are attributed to a lower extent of cement hydration and particle occlusion

Smaller pores remain saturated

Carbonation strengthening in portlandite composites

- Carbonate solids 'bind' mineral aggregates and reduce porosity, which controls strength
- Strength gain per unit CO₂ uptake depends on gas processing conditions
- Portlandite carbonation and cement hydration occur simultaneously
 - Strengthening contributions are additive in relation to reaction extent

$$\sigma_{C(t)} = A \cdot C(t) + B \cdot w_n(t)/m_{OPC}$$

where: $A = 14.7 \text{ MPa} / (g_{CO2}/g_{reactants})$
[Carbonation]
and $B = 0.38 \text{ MPa} / (w_n/m_{OPC})$ [OPC hydration]

Vance et al., Ind. Eng. Chem. Res. 54 (2015) 8908–8918.

Block carbonation experiments informing process design

Concrete masonry units were produced and carbonated using simulated coal flue gas with varying gas flow direction, flow rate, relative humidity, and temperature

Spatial variations in CO₂ uptake: Microstructure alteration

- Spatial distribution of CO₂ uptake is significantly affected by gas flow configuration
 - Greater gas velocity and homogeneity produce higher CO₂ uptake across the block in agreement with our CFD simulations
- Local strength/porosity correlated well to local CO₂ uptake due to carbonation cementation
- Block strength scales linearly with mechanical anisotropy imposed by extent of CO₂ uptake supported by FEM simulations
- Response surface generated to derive statistical models and predict spatial CO₂ uptake as a function of gas processing conditions
- Top-down flow selected for curing chamber

Design and fabrication of CO₂ mineralization system

- Developed process model and system design documentation for the carbonation of CO₂Concrete blocks informed by bench-scale studies (producing ~860 CMUs each batch)
- Performed CFD simulations to design modular gas flow distribution and product arrangement within carbonation reactor

Demonstration at "pilot scale" at Integrated Test Center, Wyoming

Samueli

School of Engineering

 The CO₂Concrete process was deployed at the Integrated Test Center (ITC) in Gillette, Wyoming (June 2020)

Laboratory for the Chemistry

of Construction Materials

UCLA

- Produced around ~200 tonnes of CO₂Concrete blocks ("CMU") over 12 demonstration runs that featured nearly 5 tonnes of CO₂ uptake
- System performance fulfilled all design specifications: (1) achieved in excess of 75% CO₂ utilization efficiency, (2) utilized greater than 250 kg of CO₂ per run (3) products complied with industry standard specifications (strength > 14 MPa)
- Process conditions optimized to reduce the energy input to achieve production price parity as compared to conventional concrete block

In-progress demonstration of pilot CO₂ mineralization system

- January 2021: The system will be deployed at the National Carbon Capture Center in Wilsonville, Alabama (1,880 MW)
- Both coal- and natural gas-combustion flue gas streams will be utilized in this demonstration

Objectives of demonstration:

- Refine system design following ITC demonstration to further optimize system performance and system energy input
- Demonstrate robustness with respect to flue gas and material inputs, and environmental conditions
- Utilize high-volume of CCRs in CO₂Concrete blocks formulation
- Assess product compliance to construction standards
- Develop code compliance reports in collaboration with ICC-ES (certification partner)

www.icc-es.org | (800) 423-6587 | (562) 699-0543 A Subsidiary of the International Code Council®

PROPOSED ACCEPTANCE CRITERIA FOR CO₂CONCRETE-BASED CONCRETE MASONRY UNITS

AC520

Proposed for October 2020 Meeting

In progress: Techno-economic analysis and life cycle assessment

Techno-economic analysis

- Perform a techno-economic analysis (TEA) of a CO₂Concrete facility, including accounting of capital, operation, and maintenance costs
- Life cycle analysis
- Compare environmental impact of CO₂Concrete and conventional CMU production
- Quantify net GHG emissions reduction offered
- Technology gap analysis
- Prepare and submit a Technology Gap Analysis (TGA) in accordance with SOPO Appendix B

Summary and conclusions

- CO₂ mineralization enables an approach to produce low-carbon concrete products while utilizing CO₂ emissions and CCRs, with strong market potential
 - CO₂ utilization into concrete without CO₂ capture step
 - Impactful potential due to the large market size of concrete
- Direct carbonation of Ca(OH)₂ using dilute CO₂ streams is a viable route towards large-scale CO₂ utilization. CO₂ mineralization occurs rapidly, and results in the rapid development of strength, indicative of cementation
- The UCLA team has demonstrated a pioneering technology at the field scale to produce structural concrete masonry units
- This project will advance the technology to the next stage of development

Project timeline

Samueli

School of Engineering

Task #	Task Name	Start	Finish	Duration		20	19		2020				
					Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
0	Project Start	01/01/19	01/01/19	0									
1	Project Management and Planning	01/01/19	12/31/20	730d									
2	Material specifications, acceptance criteria, and corr	01/01/19	12/30/20	730d									
2.1	Sourcing and characterization of CCRs and portland	01/01/19	03/01/19	60d									
2.2	Carbonation kinetics of reactants	03/02/19	04/30/19	60d									
2.3	Component performance	05/01/19	06/29/19	60d									
2.3	Component performance	08/01/20	09/29/20	60d									
2.3	Component performance	11/01/20	12/30/20	60d									
3	Bench-scale studies to acquire critical data for syst	06/30/19	10/27/19	120d									
3.1	Process conditions of simulated flue gas	06/30/19	08/28/19	60d									
3.2	Quantification of heat and mass transfer in CO2NCF	08/29/19	10/27/19	60d									

Project timeline (cont.)

Task #	Task Name	Start Finish Duration		Duration	2019					20			
					Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
4	Design and fabrication of modular, scaled CO2 proc	10/28/19	04/24/20	180d									
4.1	Component selection and system design	10/28/19	12/26/19	60d									
4.2	System construction	12/27/19	04/24/20	120d									
5	Commissioning and trial operation of the CO2NCRE	04/25/20	09/21/20	150d									
5.1	System start-up/commissioning	04/25/20	06/23/20	60d									
5.2	System performance validation	06/24/20	09/21/20	90d									
6	Field demonstration of CO2NCRETE carbonation sys	06/24/20	12/30/20	190d									
6.1	Host site preparation	06/24/20	09/21/20	90d									
6.2	Test plan development	07/24/20	09/21/20	60d									
6.3	Installation and operation	09/22/20	12/20/20	90d									
6.4	Decommissioning	12/21/20	12/30/20	10d									
7	Design and scalability analysis for commercial-scal	10/02/20	12/30/20	90d									
8	Techno-economic analysis (TEA) and life cycle asse	05/01/19	12/30/20	610d									