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The Carbon Based Economy

We operate within a system that is carbon-based
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Increasing Penetration of Renewable Electricity

Annual share of total U.5. electricity generation by source (1950-2016)
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- The general trend is a reduction in the
carbon intensity of the electricity sector
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The Continued Importance of Liquid Carbon Fuels
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- A 1-hour flight on a 747-400 uses ~3,600 gal
(11,000 kg) of jet fuel, which contains
approximately 452,000 MJ of energy.

Vhoin & - Tesla Model S battery = ~0.75 MJ/kg

s

- Weight of 747-400: 184,000 kg

- You’d need over 600,000 kg of battery for a 1-hour
flight (over 3X the weight of plane)

. | US. DEPARTMENT OF | Fnarqy Efficiency &

ENERGY Renewable Energy




Bioenergy Technologies Office

* Develop ways to use our abundant renewable biomass
resources to make biofuels and biobased products which
are classically derived from petroleum

e ~5240M in FY20 funding

* Funds applied R&D work at DOE national labs and in the
private sector/academia

* Divided into 5 Technology Programs:

* Feedstock Supply and Logistics

e Advanced Algal Systems

* Conversion

* Systems Development and Integration

* Analysis and Sustainability
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Obtaining, Managing, and Manipulating Renewable Carbon

Carbon
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into plants
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Converting Renewable Carbon to Fuels
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Comparing Technologies via Techno-Economic Analysis
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Comparing Technologies via Techno-Economic Analysis

Lignocellulosic biomass conversion to fuel

[@Capital Recovery Charge W Raw Materials & Waste 0O Process Electricity
B Grid Electricity @ Total Plant Electricity @Fixed Costs

Feedstock + Handling: 176.2¢

Pretreatment/ Conditioning: 74.3¢

Hydrolysis, Hydrolysate Conditioning, Bioconversion:105.2¢

Cellulase Enzyme: 37.5¢
Product Recovery + Upgrading: 32.7¢

Wastewater Treatment: 63.0¢

Storage: 3.0¢ ]

Boiler/Turbogenerator: 2.6¢ ]

MFEREEEEeS $5.10 IGGE
Utilities: 15.3¢ :l] MFSP

-$1.00 -50.50 $0.00 $0.50 51.00 $1.50 $2.00
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Comparing Technologies via Life Cycle Assessment

Arrows are in proportion
to amount of CO2 flow , - 2

Feedstock Production

—

Conversion & Refining

LCA System Boundary

Distribution & End Use

Life cycle assessments provide a carbon intensity
value associated with a fuel, which can be compared

with a fossil incumbent
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Expanding view of renewable carbon resources
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Sources: www.biochar.org

Waste CO,: 5G ton/yr

Wet waste: 77M ton/yr
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Other CO,U Applied R&D

» Office of Fossil Energy “Carbon Utilization”

sub-program within the “Carbon Storage”
Program.

Carbon
Utilization

 BETO Advanced Algal Systems Program.

* Tackles challenges along the supply chain—from
increasing algae productivity via the application
of advanced biological tools to the extraction
and conversion of algal components

Algenol Biotech, LLC cultivates spirulina in photobioreactors at a facility in
southwest Florida. Photo from Algenol Biotech LLC.
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Applied R&D at ARPAe

ELECTROFUELS QrpPQ-@

ELECTROFUELS

BIOFUELS
™

G-H8

ARPAe “ELECTROFUELS” route

p—

Unlike plant-based photosynthetic biofuels, electrofuels use microorganisms
to directly harness chemical and electrical energy to turn carbon dioxide into fuels

e S50M in 12 projects from 2010 — 2014
* “Biology-on-an-electrode” approach to CO2U via chemolithoautotrophs

* Demonstrated the difficulties in microbial engineering and inherent rate
limitation of bioelectrocatalysis
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BETO Efforts in CO, Utilization
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Current efforts in CO2U
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Current efforts in CO2U
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Current efforts in CO2U

CO, Electrocatalysis to produce intermediates

Enabling Studies:
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Current efforts in CO2U

Upgrading of CO,-derived intermediates

Engineering microorganisms to upgrade formate or methanol:
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Current efforts in CO2U

CO, conversion to methane for energy storage and improved use of
biogas

NREL Electrolyzer System

CH, out «— +~— media/cells flow in
(Purity target: || . N
> 97%)

H Lawrence Livermore
National Laboratory

i3 Stanford

University

CO,/CH, in —— media/cells flow out

MSoCaIGas 250 kW PEM electrolyzer and 700L DOE and SoCalGas funding LLNL and Stanford in new
bioreactor for the SoCal Gas work at NREL power-to-gas research: microbial
in collaboration with HFTO and BETO ‘fIEthf’memanoge“es‘s

s r U.S. DEPARTMENT OF Energy EfflCIenCy &

‘ ENERGY Renewable Energy




Interest in net-zero carbon fuels

Shell becomes the largest global energy Delta announces $1bn plan to be first
company to commit to a net-zero carbon neutral airline
emissions goal by 2050

8Y KATHERINE DUNN

Airline is committing $1bn over next 10 years to mitigate all
emissions from its global business

Climate and Environment

BP. one of the world’s biggest oil-and-gas companies,
. L4 L4 d d 9 views Oct 15, 2020, 06:00am EDT

says il is turning over a green leaf U.S. Utility Companies Rush To

Declare Net-Zero Targets

a Scott Carpenter Senior Contributor ©
Enaran

Can the aviation industry really go
carbon neutral by 2050?

Walmart aims for zero greenhouse

Amazon's ‘climate pledge’ commits to gas emissions by 2040

net zero carbon emissions by 2040 and |
100% renewables by 2030 @ s
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Net-Zero Carbon Fuels Tech Team

* Scope: Investigate options for generating liquid carbon-based
fuels with a reduced carbon intensity (Cl) such that, from a life
cycle carbon accounting standpoint, they have a net carbon
emissions profile approaching zero.

* Objective: Objective is to take an “LCA-first” approach to
assessing potential renewable fuel pathways, where the
technology is optimized for reduced carbon intensity and the
technoeconomics of these pathways are assessed to
determine the associated cost of carbon mitigation for a given
technology solution set.

.-ﬂ
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DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENGY AND ENERGY SUSTAINABILITY
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Initial Net-Zero Tech Team Analyses

1. Corn starch to ethanol, w/CCS
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- Leverage existing algae analyses
Blomass weie - Can be used to compare photosynthetic
. raded asoline
(Wet Algae) | Algal Hydrothermal | AHTLOIl Catalytic Upgon o VS NON- hOtOS nthetic squtions
é llqu:;?rcltlon é Hydrotreating ﬁ Fractionation | Diese . p y .
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Initial Net-Zero Tech Team Analyses

3. CO2-t0-CO to jet fuel

H2 Recycle Unconverted Gas
\ | - Leverage existing biomass syngas
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4. CO2-to-methanol to gasoline
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Initial findings: Corn EtOH + CCS

CO2 (kg)

CO2 Emissions for 1000 kg Corn to 119 Gallons Ethanol with CCS
at Fermentation Stage
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Combustion

m Co-product EOL

m Ethanol Prod.
Feedstock
Transport

M Indirect LUC

M Direct LUC

m Total CO2

m Co-product Credit

B CO2 Capture

M Biogenic Credit

Although this pathway is not net carbon-negative,
we have shown that the Ethanol with Fermentation
CCS case delivers an 81.6% decrease in product-
specific CO2 emissions when compared to the
traditional fossil-fuel pathway (gasoline).

Average corn ethanol today: ~40% reduction.

Minimum Ethanol Selling Price: $1.77/gal
Minimum Ethanol Selling Price w/CCS: $1.92/gal

This additional $0.14 per gallon price ends up being about $40/ton CO,

(45Q tax credit = $50/ton)
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Initial findings: Fuels via CO2 Electrocatalysis (“E-fuels”)

Price of electricity is the key

factor in TEA

Carbon intensity of the
electricity is the key factor
in LCA
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Price of electricity, $/kWh (0.02:0.0682:0.09)
Onstream Factor (40%@$0.02/kwh:90%@$5$0.0682/kwh)

CO2 Single-pass Conversion, (90%:20%:10%)

Electrolyzer Cost, (-50%: 0%: +50%)

CO2 Electrolysis Cell Voltage, V (1.5:3:4)

CO2 Cost, $/tonne CO2 (-35:0:40)

H20 Electrolysis Current Density, mA/cm2 (500:175:175)
Price of 02, $/tonne 02 (40:0:0)

Product Titer, g/L (95: 60: 40)

CO2 Electrolysis Current Density, mA/cm2 (500:250:100)
CO Faradaic Efficiency (100%: 98%:90%)

H20 Electrolysis Cell Voltage, V (1.65:1.75:1.75)
Productivity, g/L/d (220:195:180)

AMESP ($/kg)
Base case $2.84

OFuel combustion

m Ethanol transportation and distribution
OFermentation (ethanol production)

B CO,-to-CO electrolysis

@Hydrogen production (electrolysis)
OAvoided CO, emissions

o Life-cycle GHG emissions (Cl)

Petroleum gasoline (baseline)

Corn ethanol (baseline)

Case 1

Case 2 Case 3
MRO electricity mix

Case 1 Case 2 Case 3
Wind electricity
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Net-Zero Carbon Fuels vs “e-fuels”

Net-Zero Carbon Fuels: Renewable fuels made
from some carbon feedstock that have a net life-

cycle of zero

E-fuels: Synthetic fuels made from combining CO, and
electricity/hydrogen

E-fuels CAN be net-zero carbon, but they are not inherently so
and are not necessarily the easiest way to achieve low carbon
intensity fuels

Energy Efficiency &
Renewable Energy




Contact

lan Rowe, Ph.D.

Technology Manager | Bioenergy Technologies Office
U.S. Department of Energy
0. 202-586-7720 | lan.Rowe@ee.doe.gov
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