NETL Carbon Utilization Project Review Meeting

Carbon Utilization and the National Carbon Capture Center

John Northington, Director Southern Company

October 22, 2020

National Carbon Capture Center

- **Sponsors:** U.S. Department of Energy and its National Energy Technology Laboratory
 - DOE's primary carbon capture research facility since 2009
- **Partners:** Electric Power Research Institute, power/energy industry leaders
- Managed/operated by: Southern Company
- Location: Wilsonville, Alabama
- Infrastructure: Real-world power plant operating conditions coal and natural gas
- **Expertise:** Technical staff for design, installation, testing support and analysis
- International collaboration: Co-founder of
 International Test Center Network

Τοται

Major Accomplishments and Future Scope

- 110,000+ test hours of testing over last decade
- 60+ technologies tested / developers from 7 countries
- Post-combustion accomplishments:
 - Continuous expansion alternative regeneration, gas injection, analytical support
 - ✓ Advanced solvents, membranes, solid sorbents
 - 16 technologies in queue to test / 7 technologies scaled up (or ready) to 10+ MW

Reduced cost of CO₂ capture from fossil generation by 1/3

Oct. 1, 2020 – 5-Year Agreement Renewal / \$140 Million Expanding scope to CO₂ capture for natural gas power, CO₂ utilization, direct air capture

Utilization Capabilities

Test Bay Configuration

Test Bays

Lab-Scale Indoor, tabletop-size units

Bench-Scale Outdoor units up to ~15' x 25'

Pilot-Scale Outdoor units up to 50' x 75'

Exploring CO₂ Utilization Technologies at NCCC

- NCCC is a preferred host site for DOE utilization research funding opportunities
- NCCC is engaging developers in a variety of utilization technology areas
 - CO₂ conversion to biomass via agriculture/ aquaculture
 - Synthesis of fuels and organic chemicals
 - Conversion of CO₂ to inorganic products, i.e., construction materials
 - Synthesis of inorganic materials and chemicals
 - CO₂ as working fluid for EOR and as solvents and refrigerants

Potential CO₂ Utilization Infrastructure Additions

- Three possible scopes:
 - 1. Captured CO₂ header
 - 2. Captured CO_2 header with CO_2 gas storage
 - 3. Captured CO₂ header with CO₂ liquid storage
- Scopes 1-3 increase flexibility of CO₂ supply for utilization projects, but obviously increase cost as well
- Also evaluating possibilities of pairing capture and utilization projects that have synergies

Current CO₂ Utilization Demonstration Projects at NCCC

Southern Research	Carbon Upcycling UCLA	Helios-NRG
Ethylene production using coal-fired flue gas	CO ₂ mineralization to produce concrete	Algae technology to utilize CO ₂ for value-added products
 Thermo-catalytic process Uses nanoengineered low-cost catalyst Advantages over commercial steam Co-production of CO-rich syngas 	 Convert waste gas into pre- cast concrete building components Potential for utilization of off- spec fly ashes CO₂ utilization into concrete without CO₂ capture step Carbon XPRIZE finalist 	 Grow dense populations of algae quickly while capturing 70%+ of CO₂ Utilize algae products to reduce overall CO₂ capture cost Advance DeAqua technology for dewatering Validate capture efficiency
SR SOUTHERN RESEARCH	UCLA	<u>Helios-NRG, LLC</u>

Potential Benefits of Testing DAC Technologies at NCCC

- Existing balance of plant infrastructure, i.e., steam/heat, cooling water, electricity, etc.
- Existing analytical support and equipment
- Existing permitting in place
- Capability to test both DAC and capture from concentrated sources (or hybrid concepts)
- Experienced design, engineering, O&M and support personnel to assist in technology scale-up, process and infrastructure modifications, test operations, troubleshooting, and evaluation.

Thank You

