Electrochemical conversion of coalderived CO₂ into fuels and chemicals using a modified PEM electrolyzer

DE-FE0031712

Kendra Kuhl US12

Contact: kendra@opus-12.com

S. Department of Energy National Energy Technology Laboratory **2020 Annual Review Meeting**

COAL Project Overview

1/25/19-1/24/21, Federal: \$800k, Cost Share: \$200k demonstrate durability of CO_2 electrolysis performance.

O₂ byproduct recycled for combustion (optional)

Evaluate new polymer-electrolytes to increase voltage efficiency and

Outline

- Opus 12 Background
- Technology Description
- Project Overview
- Future Plans & Commercial Traction

Prepared for NETL Project Review Meeting

Founding Team: world leaders in CO₂ electrochemistry

Dr. Kendra Kuhl CTO

PhD in Chemistry, Stanford, Post doc, SLAC Research: Transition metal catalyzed CO₂ electroreduction, reactor design

Stanford

PhD in Mechanical Eng, Stanford Research: Modified gold catalysts for CO₂ electroreduction, reactor design

DAIMLER

NASA

Prepared for NETL Project Review Meeting

Stanford, Lawrence Berkeley National Lab

Dr. Etosha Cave CSO

Nicholas Flanders CEO

MBA, MS E-IPER, Stanford Work Experience: COO/CFO Levo, McKinsey CleanTech practice

> Forbes 30 UNDER 30 Stanford

>C

Prepared for NETL Project Review Meeting

Current Status & Key partnerships

38 employees & 10,000 sq ft facility in Berkeley, CA

Mercedes-Benz

U.S. AIR FORCE

cyclotronroad

Transforming global CO₂ emissions

...into a multi billion dollar opportunity

Prepared for NETL Project Review Meeting

A platform technology that recycles CO_2 back into chemicals and fuels

INPUTS: CO₂, WATER, ELECTRĪCITY

OOOS]2

We are converting a commercial water electrolyzer to a CO₂ electrolyzer

COMMERCIAL PEM WATER ELECTROLYZER

Membrane electrode assembly (MEA)

Polymer-electrolytes make up the membrane and are incorporated into the anode and cathode

Electrolyzer stack photo credit: Nel Hydrogen

OPUS 12 PEM CO₂ ELECTROLYZER

Innovations in Opus 12's new cathode catalyst layer:

- •Metal nanoparticle catalysts
- •Novel polymer materials
- Anode unchanged

Reverse Combustion

Overall Reaction:

 $CO_2 + H_2O + Energy \rightarrow C_xH_vO_z + O_2$ (ECO2R)

Split into electrochemical half reactions:

Water Oxidation (Anode)	EO
$2H_2O \rightarrow O_2 + 4(H^+ + e^-)$	L ⁻ 1.23 V
CO ₂ Reduction (Cathode)	
$CO_2 + m(H^+ + e^-) \rightarrow C_x H_y O_z + nH_2 O_z$	~0 V
fuels &	
Chemicals Prepared fo	r NETL Proje

Burning hydrocarbons releases energy and carbon dioxide

> To convert carbon dioxide into chemicals and fuels, must add energy back into the system

products TL Project Review Meeting

Determines

required for

ECO2R to

minimum

energy

various

Project Goal

performance.

Jan 2019

Prepared for NETL Project Review Meeting

Evaluate new polymer-electrolytes to increase voltage efficiency and demonstrate durability of CO_2 electrolysis

Task 2

- Identified commercially available polymer-electrolytes
- Down selected to top 3 based on properties

Name	Property 1	Property 2	
Polymer 1	n/a	>60	
Polymer 2	1.9-2.3	>120 at 80 C	
Polymer 3	2.2-2.7	112 at 80 C	
Polymer 4	TBD	TBD	
Polymer 5	0.67 ± 0.1	22	
Polymer 7	2.1-2.5	>80	
Polymer 8	2.1-2.5	>80	
Polymer 9	TBD	TBD	
Polymer 10	1.1	n/a	
Polymer 11	1.7-1.9	n/a	
Polymer 12	1.2-1.4	4.5-6.5	
Polymer 13	1.1-1.4	4.0-8.0	
Baseline	1.9-2.1	4.0-5.0	
Polymer 14	0.6-0.8	60-70	

Task 3-5

Ink formulation

Catalyst layer deposition

Membrane-electrode assembly

Short-term Performance testing

Target voltage efficiency achieved while maintaining high current efficiency and current density.

Task 6

Current focus of the project is demonstrating durability. We have already made significant advances in lifetime, continuing our technical progress in this area.

10x reduction in \$/ton CO cost compared to project baseline

Based on 0.08/kWh electricity cost, 120/ton CO₂, and 1 MW scale

Prepared for NETL Project Review Meeting

14

Scale-up Pathway

Integration into existing electrolyzer designs

150 - 1,000+ tons per day

We partner with electrolyzer producers to build CO_2 conversion systems

Prepared for NETL Project Review Meeting

Convert waste CO₂ into chemicals

Modular units require no changes to customers' core operations and products are identical to existing fossil fuel derivatives

February, 13 2020: we unveiled the world's first car part made from CO₂ with Mercedes-Benz in Stuttgart, Germany

Prepared for NETL Project Review Meeting

Opus 12's technology converts CO₂ to CO, which is upgraded to jet fuel

Application development funding:

LanzaTech Successful test, summer 2020

\$1.5 million contract signed for Opus 12 e-jet delivery in 2021

U.S. AIR FORCE

and LCA

innovations

Summary

- Completed all project milestones to date
- Current focus: Durability demonstration, TEA,
- Clear path to scale and commercialize

Organization Chart

• All work carried out by Opus 12: www.opus-12.com

We are electrochemists, material scientists, and engineers with cuttingedge expertise in the field of CO₂ electrocatalysis and electrochemical reactor design, scouted from the best programs in the world. Our team has partnered with industry leaders in electrolysis and plant design to implement our technology at scale.

Gantt Chart

				Year 1			Year 2				
Task	Task Title	Start	End Date	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
1	Project Management and Planning	1/25/2019	1/24/2021								
2	selection	1/25/2019	4/25/2019								
3	Ink formulation	4/26/2019	10/25/2019								
4	MEA Fabrication	10/26/2019	1/25/2020								
5	Energy Efficiency Testing	1/26/2020	4/25/2020								
6	Durability Testing	4/26/2020	10/25/2020								
7	Technoeconomic & Life Cycle Analysis	1/25/2020	1/24/2021								
	Total Project	1/25/2019	1/24/2021								

