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Structure-controlled product selectivity

“Atomically Precise” nanocatalysts

Electrochemical catalyst design

ACS Catalysis, 2019, 9, 5375 

Surface-science enabled electrocatalysis

JPCC, 2018, 122, 49, 27991
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3D Structured SnO2 Catalysts
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• Electrochemically reduce CO2 to formate/formic acid  (HCOO- / HCOOH).

• Formic acid has agricultural and industrial uses. 
• Currently produced via NG reforming and methanol processing.
• Extremely carbon intensive. 

• Formic acid is also an emerging energy carrier (53 g H2 / L)

• Key Challenges: 
• Current density
• Stability / durability
• Scalable catalyst synthetic procedure. 



Catalyst synthesis approach
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SnO2 (101)
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• Sphere size is fixed at ~200 nm based on PMMA template. 

• Constituent SnO2 nanoparticles are controlled between 2-10 nm with 
calcination in air between 300-600oC.

• Simple solution-phase synthesis and thermal processing
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Characterization Results and Echem Details

• XRD, XPS and Raman showed increased 
calcination temperature produced larger, more 
crystalline SnO2 NPs. 
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Characterization Results and Echem Details

• XRD, XPS and Raman showed increased 
calcination temperature produced larger, more 
crystalline SnO2 NPs. 

• XRD, XPS, EXAFS and Raman all confirmed SnO2

oxidation state. 
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Characterization Results and Echem Details

• XRD, XPS and Raman showed increased 
calcination temperature produced larger, more 
crystalline SnO2 NPs. 

• XRD, XPS, EXAFS and Raman all confirmed SnO2

oxidation state. 

• SnO2 catalysts mixed w/ 10 wt% carbon black, 
Nafion binder and deposited onto PTFE-coated 
carbon paper electrodes at 5.4 mgSnO2/cmgeo

2.

• All electrochemical experiments conducted in H-
Cell reactor with CO2 saturated 0.1M KHCO3
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Catalyst Performance (Formate Selectivity)
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• All catalyst synthesis 
temperatures selectively 
produced formate w/ 60-80% 
FE between -0.7V to -1.3V.

• 500 C calcination temperature 
produced highest overall 
formate FE.

• CO and H2 were the only other 
products detected.

500 oC calcined SnO2 Nanosphere
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Catalyst Activity vs Calcination Temperature
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Balance between crystallinity 
and particle size

• Below 500 oC the SnO2

formed smaller and less 
crystalline NPs.

• Above 500 oC larger SnO2

particle sizes formed: reduced 
catalyst surface area

• 500 oC was the optimum 
calcination temperature
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Benchmarking Catalyst Performance
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• Benchmarked against commercially 
available SnO2 catalyst particles 
(Sigma Aldrich; ~28 nm diameter NPs)

• Substantially higher formate current 
density at all potentials. 

• Approximately 3 times larger 
electrochemical surface area and 
number of electrochemically active Sn 
atoms at equivalent catalyst loading. 
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3D morphology Boosts Surface Area and Performance
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SnO2 Nanospheres also outperformed
non-templated SnO2 NPs of identical size. 

Electrochemical 
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(cm2/ mgSnO2)
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Long-Term Performance at -1.2V vs. RHE
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• NETL SnO2 Nanospheres
demonstrated ≥2x 
performance increase over 
SnO2 NPs.

• All catalysts demonstrated 
~70% Formate FE during
long-term runs. 

• Currently being translated
into high-performance 
electrolyzer.
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Time Dependent synchrotron X-Ray Diffraction shows:
• Rapid formation of ~25 nm metallic Sn nanoparticles 

with b-Sn crystallographic orientation. 
• No further particle growth after initial reduction. 
• In situ Raman spectroscopy confirms SnO2 transforms 

into metallic Sn at operating voltages. 
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SnO2 Nanosphere Conclusions
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1. NETL SnO2 Nanospheres out-perform SnO2 NPs and commercially available SnO2. 
• Unique shape with extremely high surface area
• Optimized synthetic process to maximize formate current density
• High formate FE and selectivity
• Stable ~25 nm nanoparticle size under steady state operation

2. In situ Raman and time dependent XRD show SnO2 is quickly reduced to metallic Sn

3. Ongoing work: Collaboration with NREL to evaluate NETL SnO2 Nanospheres in 
recently reported formate electrolyzer
• Reach industrially relevant current densities (100s mA/cm2). 
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Questions or Comments? 
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We have an open post-doc / early career position for 
electrolyzer testing

Douglas.Kauffman@NETL.DOE.GOV

Thank you for your attention!
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In situ Raman Data
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Temp Dependent O1s XPS and Raman data
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Temp Dependent Sn K-Edge EXAFS data

22

0 1 2 3 4 5 6

Sn foil

SnO
2
 sph-600

SnO
2
 sph-500

SnO
2
 sph-400

SnO
2
 sph-300

Sn-O Sn-Sn

(in oxide)
F

T
 m

a
g

n
it

u
d

e
 /

 a
.u

.

R / Å

Sn-Sn (in metal)

bulk SnO
2



Potential Dependent Product FE
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Current normalized to Electrochemical Surface Area
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SnO2 Nanospheres also outperformed
non-templated SnO2 NPs of identical size. 
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