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1) Development of critical components for an electrochemical system that is able to
convert CO2 into C2/C3 alcohols

2) Demonstration of key functions of an integrated electrochemical system for CO2
conversion using flue gas from coal-fired power plants

3) Full analysis of economics and life-cycle of the CO2 electrolysis technology for CO2
emissions mitigation from coal-fired power plants

Project Objectives and Approach

Our Approach:
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Project Funding: $1M ($800k DOE share; $200k UD Share)

Budget Period 1: 06/01/2017-2/28/2019

Budget Period 2: 3/01/2019-08/31/2020
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Kick off
Jun. 2017

Go/no-Go #1
Feb. 2019

Final Report
Aug. 2020

BP 1: Subsystem 
components 
development and 
evaluation

BP 2: System 
integration and 
evaluation, TEA, 
LCA



Major Achievements
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• Met all the milestones and performance targets

• Published key results in leading scientific journals
• Nature Catalysis 1, 748-755 (2018)
• Nature Catalysis 2, 423-430 (2019)
• Nature Chemistry 11, 846-851 (2019)
• Nature Catalysis 2, 1062-1070 (2019)

• Filed a U.S. patent application

• Testified before the U.S. Senate Committee on USE IT 
Act (Chaired by Senate Barrasso)
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Challenges in direct CO2 reduction in alkaline electrolytes

Direct CO2 electrolysis in alkaline 
condition is unsustainable

Enhanced multicarbon products 
in highly alkaline electrolytes
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Decoupling of the electrolysis steps allows sustainable C2+ production

Two-step electrolysis through CO intermediate

M. Jouny, W. Luc, & F. Jiao, Nature Catalysis 1, 748-755 (2018).
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Two-dimensional Cu nanocatalyst

• Cu nanosheets with Cu(111) exposed were successfully synthesized
• Triangle shape (a few micron in dimension) and 4-5 nm in thickness

Jiao, et al. Nature Catalysis 2, 
423-430 (2019).

Moire Pattern



Two-Step Electrochemical Conversion of CO2 to Alcohols
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Two-Step Conversion of CO2 to Alcohols: Performance
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Jiao, et al. JACS 141, 
9902-9909 (2019).

NOx



Influence of SO2 on Ag and Sn catalyst
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• Reduction in total CO2 reduction FE due to preferential 
reduction of SO2

• Performance recovered after SO2 injection has been stopped

SnAg
t=0 hr t=1 hr t=3 hr t=0 hr t=1 hr t=3 hr



Influence of SO2 on Cu catalyst
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A clear selectivity 
change towards 
formate

Slow recovery of 
C2+ selectivities

1% SO2 in CO2



SO2 concentration study on Cu

C2+ selectivity cannot 
be fully restored after 
0.01% SO2 exposure.
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Impact of NOx impurities on CO2 electroreduction
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• Losses in CO2 electroreduction FE due to preferential reduction of NO
• Quick performance recovery after NO is removed from CO2 stream
• NOx at typical concentrations in flue gases is compatible with CO2 electroreduction

Cu Ag
0
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Techno-economic Analysis of CO2 Electrolysis
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• Survey the current state-of-the-art technology in the field for the past 5 years.
• Incorporate the current leading-edge performances into TEA.
• Evaluate the economic feasibility of electrochemical CO2 conversion to products.
• Provide a roadmap for future research direction.



Roadmap to Market-competitive Production
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• Overall, electricity cost is one 
of the key parameters in cost 
reduction for all products.

• With a current technology, C1
product production is 
economically viable, while C2
product production still 
demands tech enhancement.



Roadmap to Market-competitive Production
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Ethanol

• The roadmap suggests improving cell performance (50% EE) is crucial to cut down to < 1 USD/kg.
• With technical development along with appropriate policymaking, ethanol production via CO2RR 

will be market-competitive. (0.4-0.8 USD/kg)



Life Cycle Analysis
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Generation

Proposed Process

Comparison Process

Process emissions breakdown. Electrolyzer parameters are
taken from experimental data. LCA modeled in openLCA with
TRACI 2.1 (NETL) method using 2025 capacity expansion US
MIX profile for electricity. The proposed product system is
assumed to have 50% of electricity demand supplemented by
onsite solar PV electricity.

Breakeven analysis. Process emissions dependence 
on the proportion of electricity supplemented by 
onsite solar PV . All other parameters are held 
constant.

Break-even 
point

Electrolysis of CO2 to alcohols requires a clean source of electricity.
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Outlook

Jouny, Hutchings, Jiao, Nat. Catal. (2019)
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Thank you
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