Electrochemical Conversion of Carbon Dioxide to Alcohols (FE0029868)

Feng Jiao

Center for Catalytic Science & Technology Department of Chemical and Biomolecular Engineering University of Delaware, Newark, DE (USA)

2020 Carbon Utilization Project Review Meeting October 21, 2020

Project Objectives and Approach

- 1) Development of critical components for an electrochemical system that is able to convert CO_2 into C_2/C_3 alcohols
- 2) Demonstration of key functions of an integrated electrochemical system for CO₂ conversion using flue gas from coal-fired power plants
- 3) Full analysis of economics and life-cycle of the CO₂ electrolysis technology for CO₂ emissions mitigation from coal-fired power plants

Our Approach:

Project Funding: \$1M (\$800k DOE share; \$200k UD Share) Budget Period 1: 06/01/2017-2/28/2019 Budget Period 2: 3/01/2019-08/31/2020

Kick off Jun. 2017 Go/no-Go #1 Feb. 2019 Final Report Aug. 2020

BP 1: Subsystem components development and evaluation

BP 2: System integration and evaluation, TEA, LCA

Major Achievements

- Met all the milestones and performance targets
- Published key results in leading scientific journals
 - Nature Catalysis 1, 748-755 (2018)
 - Nature Catalysis 2, 423-430 (2019)
 - Nature Chemistry 11, 846-851 (2019)
 - Nature Catalysis 2, 1062-1070 (2019)
- Filed a U.S. patent application
- Testified before the U.S. Senate Committee on USE IT Act (Chaired by Senate Barrasso)

Challenges in direct CO₂ reduction in alkaline electrolytes

Enhanced multicarbon products in highly alkaline electrolytes

- 1. Suppressed hydrogen evolution reaction
- 2. Enhanced C-C coupling

Carbonate formation in alkaline electrolytes

Direct CO₂ electrolysis in alkaline condition is unsustainable

- 1. Carbonate precipitate degrades electrolyzer performance
- 2. CO₂ consumed
- 3. Electrolyte consumed

Two-step electrolysis through CO intermediate

Decoupling of the electrolysis steps allows sustainable C₂₊ production

M. Jouny, W. Luc, & F. Jiao, Nature Catalysis 1, 748-755 (2018).

Two-dimensional Cu nanocatalyst

- Cu nanosheets with Cu(111) exposed were successfully synthesized
- Jiao, et al. *Nature Catalysis* 2, 423-430 (**2019**).
- Triangle shape (a few micron in dimension) and 4-5 nm in thickness

Two-Step Electrochemical Conversion of CO₂ to Alcohols

Two-Step Conversion of CO₂ to Alcohols: Performance

Influence of SO₂ on Ag and Sn catalyst

- Reduction in total CO₂ reduction FE due to preferential reduction of SO₂
- Performance recovered after SO₂ injection has been stopped

Influence of SO₂ on Cu catalyst

1% SO₂ in CO₂

A clear selectivity change towards formate

Slow recovery of C2+ selectivities

SO₂ concentration study on Cu

C2+ selectivity cannot be fully restored after 0.01% SO₂ exposure.

Impact of NO_x impurities on CO₂ electroreduction

- Losses in CO₂ electroreduction FE due to preferential reduction of NO
- Quick performance recovery after NO is removed from CO₂ stream
- NO_x at typical concentrations in flue gases is compatible with CO₂ electroreduction

Techno-economic Analysis of CO₂ Electrolysis

- Survey the current state-of-the-art technology in the field for the past 5 years.
- Incorporate the current leading-edge performances into TEA.
- Evaluate the economic feasibility of electrochemical CO₂ conversion to products.
- Provide a roadmap for future research direction.

Roadmap to Market-competitive Production

- Overall, electricity cost is one of the key parameters in cost reduction for all products.
- With a current technology, C₁
 product production is
 economically viable, while C₂
 product production still
 demands tech enhancement.

Roadmap to Market-competitive Production

- The roadmap suggests improving cell performance (50% EE) is crucial to cut down to < 1 USD/kg.
- With technical development along with appropriate policymaking, ethanol production via CO₂RR will be market-competitive. (0.4-0.8 USD/kg)

Life Cycle Analysis

Electrolysis of CO₂ to alcohols requires a clean source of electricity.

Process emissions breakdown. Electrolyzer parameters are taken from experimental data. LCA modeled in openLCA with TRACI 2.1 (NETL) method using **2025 capacity expansion US MIX profile for electricity**. The proposed product system is assumed to have 50% of electricity demand supplemented by onsite solar PV electricity. **Breakeven analysis.** Process emissions dependence on the proportion of electricity supplemented by onsite solar PV . All other parameters are held constant.

Outlook

Acknowledgements

Project managers: Andy O'Palko (Current) Ted McMahon Bruce Lani

Thank you