
Field-Scale Testing of the Thermocatalytic Ethylene Production Process Using Ethane and Actual Coal-Fired Flue Gas CO₂

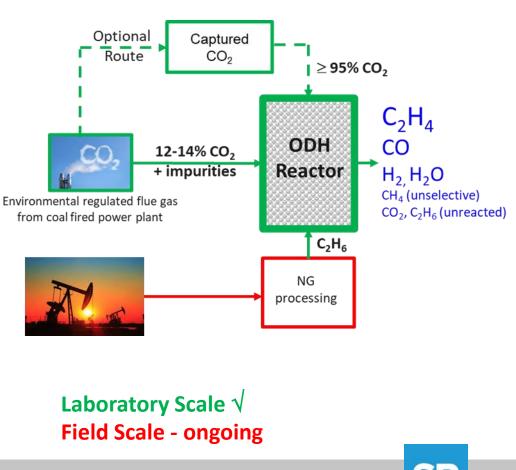
DE-FE0031713

Jadid E. Samad, Joel Cassidy and Amit Goyal

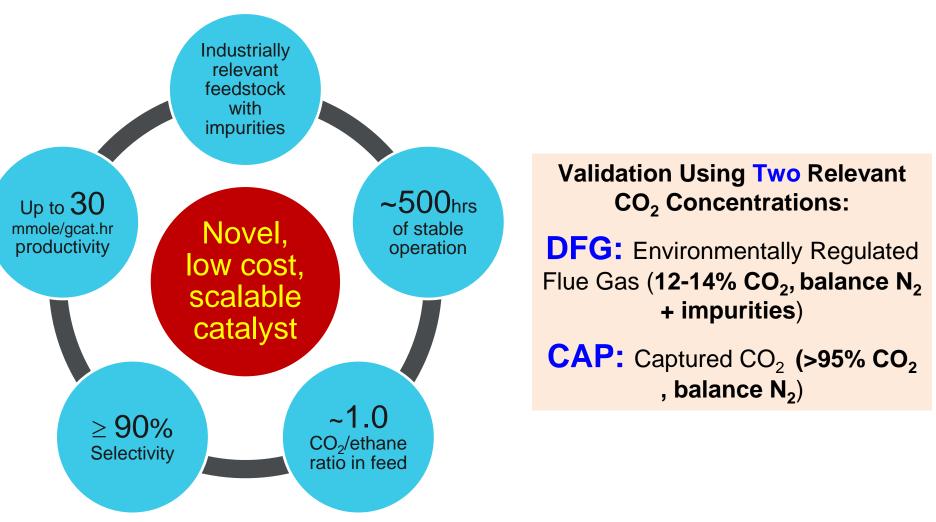
U.S. Department of Energy

October 21-22, 2020

TECHNOLOGY BACKGROUND


Summary

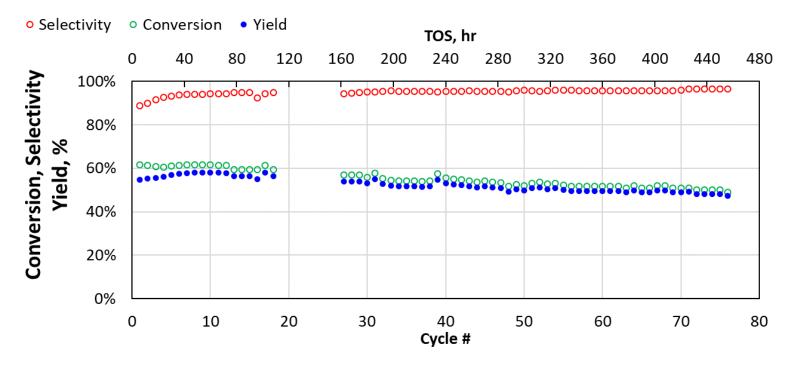
Thermo-catalytic ethylene production using ethane and CO₂ (CO₂ ODH)


Oxidative dehydrogenation (ODH): $C_2H_6 + CO_2 = C_2H_4 + CO + H_2O$

Advantages over commercial steam cracking (SOA)-

- At least 150°C lower operating temperature
- Catalytic process that utilizes CO₂ and eliminates use of H₂O and external reductants (e.g., H₂) or strong oxidant (e.g., O₂)
- Process adaptable to different CO₂ streams with impurities
- Reduced process footprint due to high reaction selectivity
- Co-production of CO-rich syngas
- With co-product utilization, production cost can be lowered to SOTA cost
- ✓ 50% or more overall GHG emission reduction via direct CO₂ conversion

Nano-Engineered Catalyst



Catalyst addresses key commercialization issues

SR

Laboratory Scale Results

Long Term Stability: Direct Flue Gas (FG) Utilization

Cycle: 5hr continuous run followed by 1hr air regeneration

□ Feed: Ethane and simulated flue gas (CO₂ 12.5%, 80ppm SO₂, 80ppm NO, Trace O₂ and balance N₂), CO₂:Ethane ~ 1.5

Productivity: Up to 9 mmole/gcat.hr C_2H_4 production

CURRENT PROJECT PROGRESS AND SCOPE

Project Timeline

Task Name	Start	End	Resource
Task 1: Project management and reporting	Fri, 02/01/19	Sun, 01/31/21	SR
Task 2: Field scale preparation and testing	Fri, 02/01/19	Sun, 06/30/19	SR
Task 2.1: Catalyst scale up	Fri, 02/01/19	Sun, 03/31/19	SR
Task 2.2: Catalyst testing in a lab scale reactor	Mon, 04/01/19	Sun, 06/30/19	SR
Task 3 : Technology maturation plan	Mon, 07/01/19	Wed, 07/31/19	SR
Task 4: Procurement and integration of actual flue gas with skid	Thu, 08/01/19	Fri, 01/31/20	SR/NCCC
Task 4.1 Field scale skid preparation and transportation to the host site	Thu, 08/01/19	Mon, 09/30/19	SR
Task 4.2 Integration with the host site and commissioning of the skid	Tue, 10/01/19	Fri, 01/31/20	SR/NCCC
Task 4.3 Development of a baseline ASPEN simulation model	Mon, 09/30/19	Fri, 01/31/20	SR
Task 5: Continuous operation using actual flue gas	Sat, 02/01/20	Mon, 11/30/20	SR/NCCC
Task 6. Techno-economic and life cycle/ technology gap analysis	Tue, 12/01/20	Sun, 01/31/21	SR

Project Financial Overview

	Project duration: 2 years		
	(02-01-2019 to 01-31-2021)		
	DOE funds Cost Share		
Total (\$)	\$1,499,442 \$375,458		
Total Cost Share %	20%		

	Year 1							
Baseline	01/1/2019 -	03/31/2019	04/1/2019 - 06/30/19		07/1/19 - 09/30/19		10/1/19 - 12/31/19	
reporting Quarter	01	Cumulative	02	Cumulative	03	Cumulative	04	Cumulative
	Q1	Total	Q2	Total	Q3	Total	Q4	Total
Federal Share	46235.4	46235.4	151157.3	197392.7	203707.9	401100.6	155258.0	556358.6
Non-Federal Share	4794.6	4794.6	6875.4	11670.0	25834.2	37504.2	18457.0	55961.1
Total Incurred	51030.0	51030.0	158032.7	209062.7	229542.1	438604.8	173714.9	612319.7

	Year 2							
Baseline reporting	01/1/2020 -	03/31/2020	04/1/2020	- 06/30/20	07/1/20 -	09/30/20	10/1/20 -	- 12/31/20
Quarter	05	Cumulative	06	Cumulative	07	Cumulative	08	Cumulative
	Q5 Total Q6 Total	Q7	Total	Q8	Total			
Federal Share	120293.6	676652.2	161492.0	838144.2				
Non-Federal	43469.0	99430.2	58662.7	158902.8				
Share	13 102.0	<i>))</i> 130.2	50002.7	150702.0				
Total Incurred	163762.6	776082.3	220154.7	997046.9				

Partners: ARTC (Catalyst consultant)

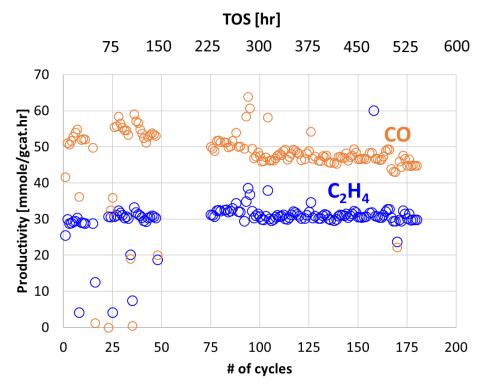
Host site: NCCC

Technical Approach

- National Carbon Capture Center (NCCC), Wilsonville, AL (Host site)
- ~100x catalyst scale up
- □ Lab scale run using captured CO₂ (Pre-evaluation of scaled up catalyst)
- □ Total 2000-hr of total testing using **two actual** CO₂ streams (**DFG & CAP**)
- Technoeconomic and Lifecycle assessment (TEA/LCA)

Test	Max. flow rate (L/min)				Ethane	Testing
Case	Cap.	Flue	C ₂ H ₆	Total	vol% in	duration
	CO ₂	gas		Max.	feed	(hrs)
САР	10	N/A	5	12	≥ 20%	1000
FG	N/A	12	1	12	≤ 10%	1000

Flow rates for different CO₂ test cases

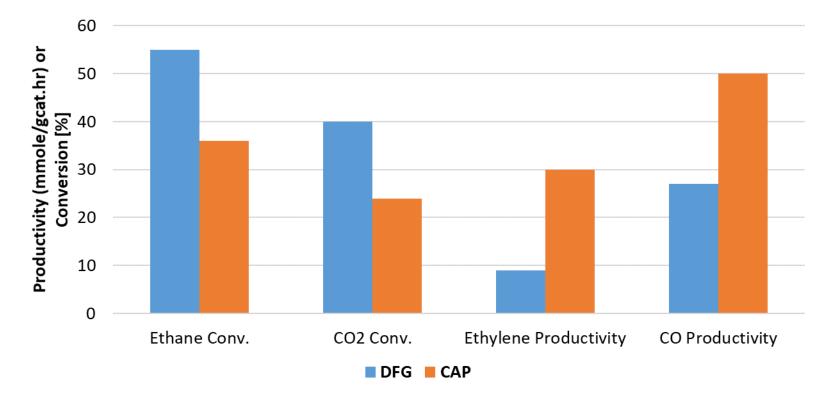

Actual CO₂ composition

	Actual Composition (vol%)			
FG	14% CO ₂ , 4.5% O ₂ , 68.5% N ₂ +Ar, 13% H ₂ O, < 1ppm SO ₂ , ~ 50ppm NO			
САР	> 99.5% CO ₂ , balance N_2			

SR

Catalyst scale up and validation

Long Term Stability: Captured CO₂ (CAP) Utilization


C₂H₆ conversion 36% C₂H₄ Selectivity 90% CO₂ conversion 24%

Cycle = 2.5hr continuous run followed by 1hr air regeneration

- □ Feed: Ethane and simulated captured CO₂ (95% CO₂, balance N₂); CO₂:ethane ~1.5
- \Box Up to 30 mmole/gcat.hr C₂H₄ production

Performance Summary (Lab scale)

CAP vs. DFG

- Higher productivity in CAP (lower reactor volume and capital investment)
- Higher conversion in DFG

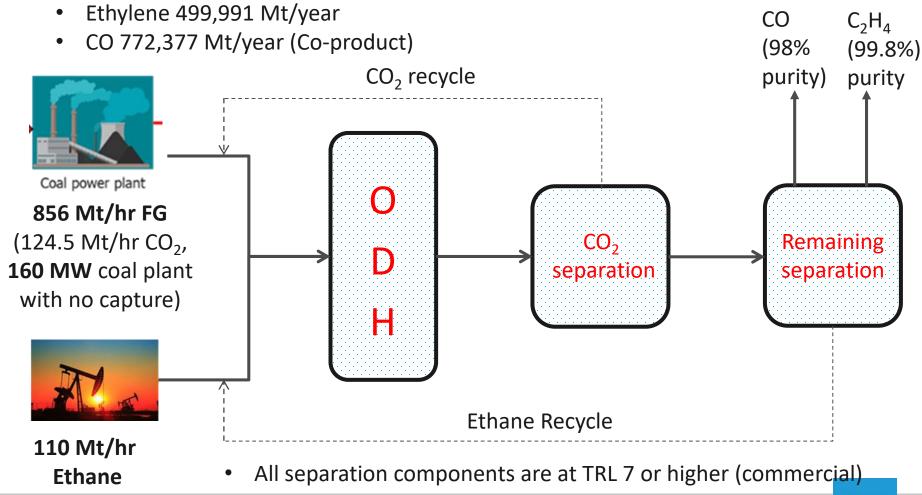
Field Scale Skid

- 52" x 76" skid enclosure to maintain Class I, Division 2 and industrial code standards
- Skid successfully transported to NCCC on February 25, 2020

12

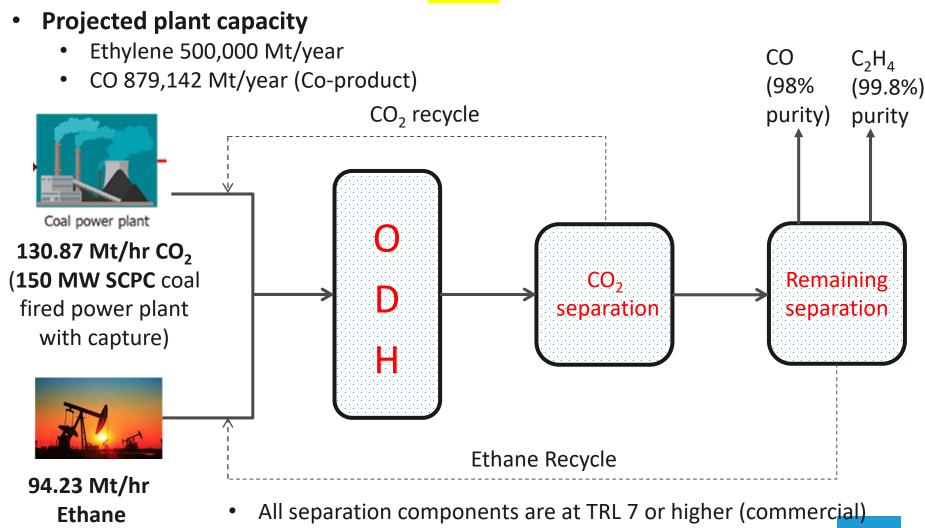
SR

13


TECHNO-ECONOMIC ASSESSMENT

Two cases: 1. Direct flue gas (DFG), 2. Captured CO₂ (CAP)

Material Balance


Projected plant capacity

SR

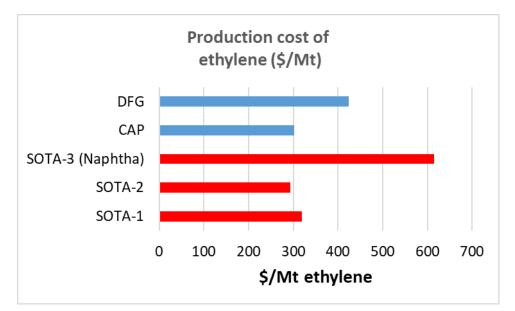
Material Balance

SR

Pricing of Materials/Chemicals

Material	Role	\$/unit
Ethane	Raw material	\$150/Mt
Flue gas	Raw material	\$0.0/Mt
Captured CO ₂	Raw material	\$40/Mt
Natural gas	Utility	\$3.1/ 10 ³ ft3
Steam	Utility	\$3.0/klb

Ref:


1) Ethane price: <u>http://marketrealist.com/2016/05/ethane-prices-fell-4-week-rally-impact-mlps/</u>.

2) Natural gas: eia.gov

3) Steam: How to calculate true steam cost. US DOE. EERE

Cost of Production

Cost type	DFG	САР
Total permanent investment ^[1]	\$ 811,635,823	\$ 410,602,298
Capital depreciation ^[2]	\$ 35,987,442	\$ 18,008,872
Annual operating Cost	\$ 503,249,579	\$ 398,058,669
Total production cost (annual) ^[3]	\$ 539,237,021	\$ 416,067,542
Ethylene production cost	\$0.424/kg	\$0.302/kg

Production cost in CAP case is similar to the lowest SOTA^[4] case

TEA comparison

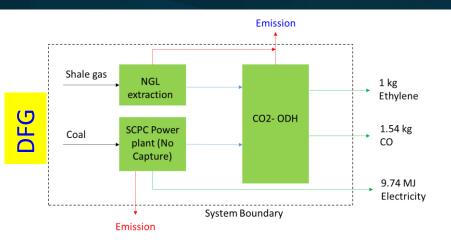
^[1] Includes 25% contingency, 4% (of TDC) land and 10% (of TDC) start-up ^[2] 20-year straight

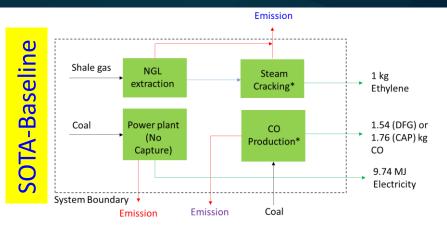
^[3] Includes capital depreciation, fixed and variable operating cost

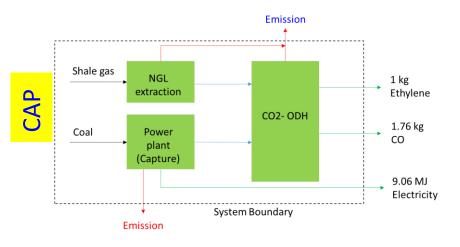
[4] Yang, M., & You, F. (2017). Industrial & Engineering Chemistry Research, 56(14), 4038-4051.

18

LIFE-CYCLE ASSESSMENT (LCA)

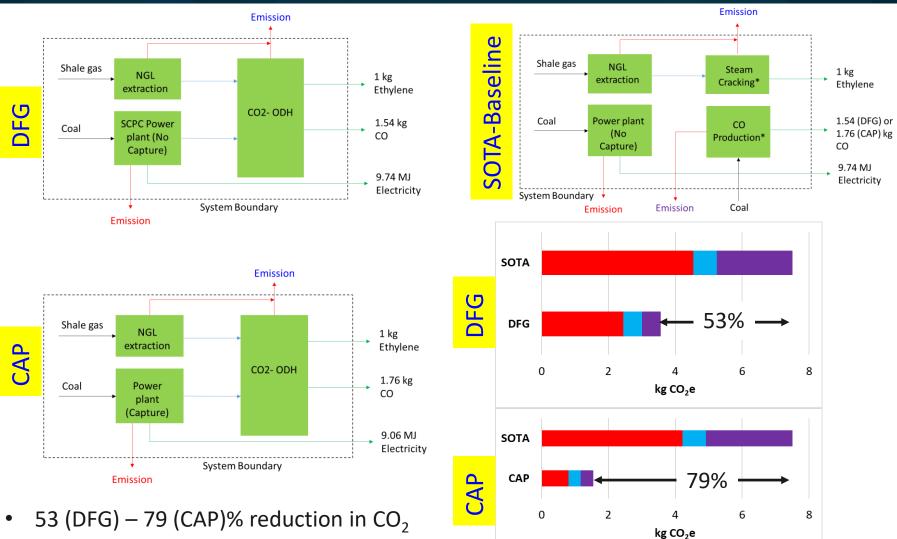

Two cases: 1. Direct flue gas (DFG), 2. Captured CO₂ (CAP)


Database Libraries


Following database libraries were used in openLCA-

- Power plants *NETL process library*
- *Ethylene, materials, production, organic compound, at plant, kg* (lcacommons.gov)
- *Carbon monoxide, at plant* (lcacommons.gov)
- PI generated laboratory scale data

System Boundary



SR

LCA Summary

emission compared to SOTA baseline

21

Power generation Ethylene Production CO production

Future Plans

Complete ongoing project

Complete a cumulative 2000-hr testing on field scale

Update TEA/LCA

Recommendations for future research include -

 \Box Other sources of real CO₂ wastes: Concentration/Purity

Product processing and separation

Process scale up with separation

□ Co-product utilization

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-FE0031713

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank you! Questions/Comments?