Storing CO₂ in Built Infrastructure: CO₂ Carbonation of Precast Concrete Products

Project Award No. DE-FE0030684 (10/2017 – 12/2020)

Brian R. Ellis University of Michigan

U.S. Department of Energy National Energy Technology Laboratory **2020 Annual Review Meeting**

Project Overview

• Funding

DOE: \$999,999 Cost share: \$250,000

Overall Project Performance Dates

 10/2017
 Kickoff meeting

 10/2017 – 03/2019
 Budget period 1

 No-cost extension
 7/2019 – 12/2020*

 Budget period 2 (*pending NCTX)

Project Overview

Project Participants

Principal Investigator (PI): Brian R. Ellis Co-PIs: Victor C. Li; Steven J. Skerlos Post-doc Researcher: Duo Zhang Visiting Scholar: Beata Jaworska, Alex Neves Junior Graduate Students: Tae Lim; Jubilee Adeoye; Wei-Hsiu Hu

Overall Project Objectives

Utilize CO₂ and coal combustion fly ash in developing novel construction materials;

Provide a net reduction in life-cycle emissions and cost.

Technology Introduction

Technology Introduction

Technical/ Environmental Impacts	Current Railway Tie Products	Proposed Technology
Material Type	Pre-stressed Concrete – Brittle and subjected to cracking	Ultra-ductile ECC with intrinsically tight cracks
Tensile Ductility	<0.01%	>2%
Environmental Impacts for Production	High emission and cost for high- strength concrete and pre- stressing wires	Lowered emission and cost by CO ₂ sequestration and reduced need for pre-stressing
Lifecycle Impacts	High lifecycle emissions, energy, and costs due to low durability	Lowered lifecycle emissions, energy and cost by longer durability and lower need for maintenance and repair

Technology Introduction

Project Challenges

- Enhancing CO₂ uptake efficiency to satisfy the demand for industrial production;
- Maintaining high material ductility and durability;
- Minimizing manufacturing cost for CO₂ product line;
- Ensuring superior durability for railway tie applications

Technical/Economic Benefits

- Significant reductions in lifecycle emissions, energy and cost;
- Demonstrate novel strategy for utilizing CO₂ in value-added construction products

Technical Approach/Project Scope

Objectives

 Demonstrate CO₂ utilization into novel durable ECC railway ties with lower lifecycle cost and environmental impacts

Success Criteria

- Carbonation process and mix design of ECC reaching a minimum of 10% CO₂ stored; Achieved
- Carbonated ECC rail tie with life cycle carbon and energy footprints 20% lower than current concrete ties, meeting AREMA standards and passing TTCI Phase 1 (13-tie) test Ongoing

Technical Approach/Project Scope

Bench-Top Reactor (Budget Period 1)

- Temperature up to 100°C
- Pressure up to 5 bar

ECC shows higher flexural strength after carbonation curing

Material	No.	Ultimate Flexural Strength (MPa)	Average Flexural Strength (MPa)			
Carbonated ECC	1	11.71				
	onated ECC 2 1		12.03			
	3	13.52				
Non - Carbonated ECC	1	11.80				
	2	9.38	10.50			
	3	10.33				

ECC fatigue resistance is enhanced by carbonation curing

Fatigue Testing Configuration

Crack width distribution is comparable between carbonation-cured and non-carbonated ECC

Cracks were measured when loaded to 3% strain

Carbonation curing improves ECC length stability

Carbonation curing maintains ECC self-healing efficiency

Resonance Frequency (RF) indicates comparable self-healing capability between carbonation-cured and non-carbonated ECC

We are designing full-size ECC railway tie while setting up reactor

Current ECC (M45) meets Class 3 track requirement and can be improved up to Class 5 by introducing PE-ECC

Allowable speed and tonnage will be substantially increased using PE-ECC railway tie

CO₂ uptake is lower for PE-ECC due to dense microstructure and can be restored using *pre-carbonated ingredients*

We developed **consequential LCA** that integrates process-based LCA and Monte Carlo simulation

Process-Based LCA

Monte Carlo Simulation

- Tie failure rate
- Tie replacement strategy (spot vs. TLS)
- Tie replacement capacity (#ties/year for spot, TLS)
- Train type (coal, intermodal, intercity, HSR)
- Impact from adjacent ties

- Functional Unit: 1km of track service to trains
 - 1 km of rail
 - 2640 ties

Concrete tie failure can be estimated by Weibull distribution

- Weibull failure distribution applied to concrete tie
 - Weibull parameters can be adjusted to fit 1) observed failure trend, 2) expected tie lifespan
- Each of the installed ties follow Weibull distribution, making it possible to conduct Monte Carlo simulation
- Past LCA studies assumed zero premature failure for concrete ties which is not consistent with reported data

Example of slow order implementation

Example Monte Carlo results

- 100 km track section
- Train type: intermodal freight
- Tie degradation rate: gradual, with average lifespan of 40 years

Summary Slide

- Carbonation curing leads to equivalent to superior ECC *durability* compared to the non-carbonated reference;
- Ongoing fatigue tests will provide further insights into *lifetime prediction*;
- The novel consequential LCA model can reflect use-phase costs and impacts caused by railway tie failure, and will be implemented to full-size tie evaluation

Appendix

- Organization Chart
- Gantt Chart

Organization Chart

Gantt Chart

	Budgte Period 1						Budget Period 2						
	10/01/17-06/30/19					07/01/19-12/31/20							
Task 1 - Project Management and Planning													
Milestones				}									
(a) Project Management Plan	///X///			}									
(b) Kickoff Meeting	<u>///¥///</u>			}									
Task 2 - CO2 Carbonation of Engineered Cementitious													
Composites (ECC) and Caustic Solid Waste Materials													
Milestones													
(c) Carbonation process and mix design of ECC reaching a													
minimum of 10% CO2 stored				()///×	[
Task 3 - Optimization and Material Characterization of													
Carbonated ECC Products													
Milestones													
(d) Carbonated ECC with tensile ductility reaching a minimum of													
2% strain				{	(///x								
				}									
Task 4 - Composite-Product (Rail Tie) Integration and Testing													
				{									
Subtask 4.1: Long term durability determination													
Subtask 4.2:Process Integration at Scale				}									
Subtask 4.3: Market Analysis for Carbonated ECC Rail Ties				}									
				}									
Milestones													
(e) Carbonated ECC meeting durability criteria of 50 years under				}									
accelerated testing conditions								/////x					
(f) Carbonated ECC rail tie meeting AREMA standards				<u> </u>						х			
(g) Carbonated ECC rail tie with life cyclec cost 20% lower than				}									
current concrete ties											х		
				}									
Task 5 - Evaluation of Life Cycle CO2 Emissions Reduction				[
				{									
Subtask 5.1: Separation of CO2 from Flue Gas													
Subtask 5.2: Consequential Life Cycle inventory of Carbonated				{									
ECC Rail Tie Production				<u> </u>									
Subtask 5.3: Evaluating Carbonated ECC against													
Sustainability Necessary Conditions				{									
Subtask 5.4 – Techno-economic Feasibility Study and													
Technology Gap Analysis													
Milestones				}									
(h) Carbonated ECC rail tie with life cycle carbon and energy													
footprints 20% lower than current concrete ties				{								х	