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Opportunity Space for Manufacturing

* Improve the energy and carbon productivity of U.S. manufacturing.
* Reduce life cycle energy and resource impacts of manufactured goods.
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L Energy consumption by sector from EIA Monthly Energy Review, 2018 98.5 quadrllllon Btu, 2014
2 |ndustrial non-manufacturing includes agriculture, mining, and construction

3 US economy energy losses determined from LLNL Energy Flow Chart 2014 (Rejected Energy),

adjusted for manufacturing losses

4 Manufacturing energy losses determined from DOE AMO Footprint Diagrams (2014 data)
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AMO’s Approach

AMO works to increase energy and material efficiency in manufacturing

to drive energy productivity and economic growth.

Uses roughly 25% of the nation’s
primary energy

Represents nearly 80% of energy §

use in energy-intensive sectors

Generates 11% of
the U.S. GDP and 13 million jobs

Incurs $150 billion

in energy costs annually
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Improve the productivity, competitiveness,
energy efficiency, and security of
U.S. manufacturing

Reduce the life cycle energy and resource
impacts of manufactured goods

Leverage diverse domestic energy resources
and materials in U.S. manufacturing, while
strengthening environmental stewardship

Transition DOE-supported innovative
technologies and practices into U.S.
manufacturing capabilities

Strengthen and advance the
U.S. manufacturing workforce




Drivers to Reduce Energy & Emissions through the Product Life Cycle

Energy Intensity e.g.:

* Process efficiency New
* Process integration Processes
* Waste heat recovery
Carbon Intensity, e.g.:
New * Process efficiency
Materials * Feedstock substitution
e Biomass-based fuels
* Renewables
Use Intensity e.g.: Improved
* Circular Economy Products by
* Design for Re-X (recycling reuse|i| Next
and remanufacturing) Generation
* Material efficiency and Materials
substitution and
Processses. | 4




Energy Intensity e.g.: ==
Process efficiency
Process integration

Waste heat recovery

Carbon Intensity, e.g.:
Process efficiency
Feedstock substitution
Biomass-based fuels
Renewables

Use Intensity e.g.:
Circular economy Design for
Re-X (recycling,
reuse and remanufacturing)
Material efficiency and
substitution

Energy Intensity

Technical Energy Savings Opportunities:

Chemicals
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Energy Intensity e.g.:
Process efficiency
Process integration

Waste heat recovery

Carbon Intensity, e.g.:
Process efficiency
Feedstock substitution
Biomass-based fuels
Renewables

Use Intensity e.g.:
Circular economy Design for
Re-X (recycling,
reuse and remanufacturing)
Material efficiency and
substitution
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Carbon Intensity
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Example analysis based in part on bandwidth SOTA & PM potential, and EIA
Annual Energy Outlook (AEO) forecast as baseline.



Use Intensity

Energy Intensity e.g.:
Process efficiency
Process integration

Waste heat recovery

Carbon Intensity, e.g.:
Process efficiency
Feedstock substitution
Biomass-based fuels
Renewables

Use Intensity e.g.:
Circular economy
Design for Re-X (recycling,
reuse and remanufacturing=e
Material efficiency and
substitution




AMO Industrial Decarbonization Roadmap - Background

* Direction by Congressional House and Senate to “develop
decarbonization roadmaps to guide R&D at the DOE...to phase out
net GHG emissions by 2050” and opportunity to increase U.S.
competitiveness in the industrial sector.

 The roadmap is the multi - [ab effort (NREL, Berkeley, Argonne,
Oak Ridge) in consultation with key stakeholders involved in the
U.S industrial sector.

o Focus on five industries: cement, iron & steel, food, and
chemicals, petroleum refining

o External workshops with industry held in spring 2020



Decarbonization Roadmap Main Takeaways

Fig 1. Example of projection of GHG emissions for the three decarbonization pillars across the iron and
steel, chemical manufacturing, food manufacturing, petroleum refining and cement sectors for the near
zero GHG scenario (excluding feedstocks)
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Identify barriers, pathways, RD&D needs, and opportunities, and propose RD&D action plan for each industry.
Identified RD &D needs and opportunities are centered around three main decarbonization pillars for the U.S
industry:

v’ Energy efficiency

v’ Electrification and low carbon fuels

v’ Carbon capture, utilization and storage
These pillars are explored by studying crosscutting and sector specific technologies, process, and practice for the
five industries.



Barriers to Industrial Decarbonization

 While Fig. 1 indicates potential GHG reductions via the three
decarbonization pillars, the road to net-zero is cluttered with
barriers (sector specific and crosscutting) - that will need to be
addressed.

* Crosscutting barriers can be categorized into four main groups:
o Industrial heterogeneity
o Incumbent technology and practices
o High costs
o Scale up

o These barriers can be addressed by RD&D investment



RD&D investment needs and opportunities

* A wide range of investments is needed across multiple cross-cutting and sector specific
technologies.
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Fig 2. Landscape of RD&D investment needs and opportunities for decarbonization



Stakeholder Input to the Roadmap

Proactive pursuit of multiple decarbonization pillars concurrently (e.g. energy
efficiency, electrification and low-carbon fuels, and CCUS) is needed by leverage
current resources and programs from public and private sectors

Investments in early, low-carbon process TRL technologies will be needed soon to
ensure future market viability.

Focus is needed not just on new technologies, but on their integration into process
systems and supply chains to reduce energy and GHGs.

Pursue low capital investment approaches highlighted by stakeholders, that have
multiple benefits and spur early action to reduce GHGs (e.g. energy, materials, system
efficiency).

The timing and alignment with expansion of a renewable energy grid system will be
critical

Workforce development is needed across industries and a spectrum of skill sets.



Three Decarbonization Pillars with Examples of Technologies for the
Chemical Industry

Energy Efficiency Electrification CCUsS
Strategic energy Process Integration with
management electrification, process heat

intermittent power _
Energy, systems, and CO, reuse via
materials efficiency Process heat slip streams
(e.g., recycling and portfolio

CO,

waste minimization) _ _
Electrolyzer bioconversion

Smart manufacturing efficiency

Combined heat and Low-carbon
power, and processes and
waste heat to power catalyst innovations

Systems efficiency Energy/thermal
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operations recovery
Innovative
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Decarbonization Pathways and Scenarios for Chemical Sector

CO2 EMISSIONS FORECAST FOR AMMONIA, METHANOL, ETHYLENE, AND BTX IN THE UNITED STATES BY
SCENARIO, 2015-2050

IMPACT OF THE THREE DECARBONIZATION PILLARS ON CO2 EMISSIONS FOR AMMONIA, METHANOL,
AND ETHYLENE, AND BTX PRODUCTION IN THE UNITED STATES UNDER BAU AND NEAR ZERO GHG

SCENARIOS
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2020

CCUs

Low Carbon Fuels

Decarbonization technology options and transitions
* SEQUENCE OF RD&D INVESTMENTS OPPORTUNITIES BY DECADE

* TECHNICAL MATURITY LEVELS OF DECARBONIZATION TECHNOLOGIES
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* Other unit operations
improvements
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Thank You.

For additional information:

energy.gov/eere/amo/advanced-manufacturing-office

ANL - Sarang Supekar

LBNL —William Morrow

NREL — Alberta Carpenter, Tsisilile Igogo, Colin McMillan
ORNL —Sachin Nimbalkar

ACEEE - Ed Rightor, Neal Elliott

Consultants — Ali Hasanbeigi, Bruce Hedman

AMO — Kate Peretti, Felicia Lucci, Joe Cresko
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https://energy.gov/eere/amo/advanced-manufacturing-office

