

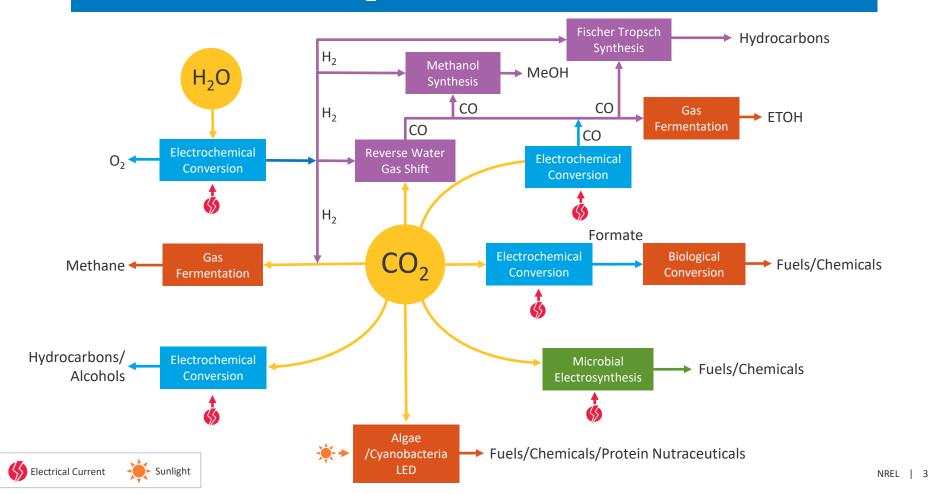
Electrons to Molecules at NREL: Renewable Chemical Technologies

Randy D. Cortright, Ph.D. Strategic Lead for Electrons to Molecules October 22, 2020

Downward Trends for Renewable Electricity Costs

Unsubsidized Wind LCOE LCOE LCOE (S/MWh) Wind 9-Year Percentage Decrease: (69%) (\$/MWh) Utility-Scale Solar 9-Year Percentage Decrease: (88%) Wind 9-Year CAGR: (12%) Utility-Scale Solar 9-Year CAGR: (21%) \$250 \$450 minu 5- rear critoris (rizia) 400 \$359 200 350 300 150 250 \$135 \$248 \$124 200 100 \$72 \$71 150 \$70 \$125 \$59 \$55 \$98 100 \$47 50 \$45 \$42 50 0 0 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 LCOE LCOE Version 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 Version 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 — Wind LCOE Mean Crystalline Utility-Scale Solar LCOE Mean

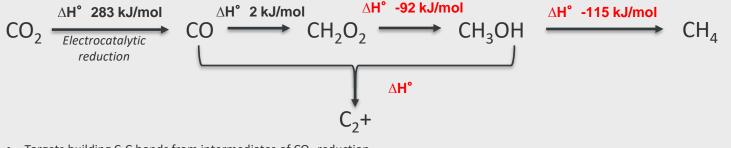
Unsubsidized Solar PV LCOE


\$79

\$64

\$55 \$50

\$43


E2M CO₂ Conversion Pathways

E2M - CO₂ Reduction and Utilization

$$H_2O \xrightarrow{\Delta H^{\circ} 242 \text{ kJ/mol}}_{Electrolysis} H_2 + 1/2O_2$$

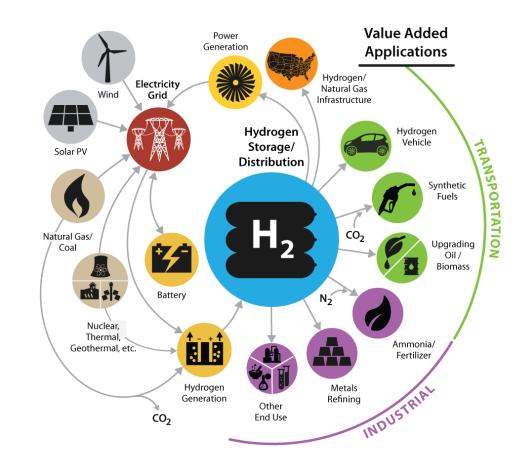
• Leverages Program work from FCTO, BES, etc

- Targets building C-C bonds from intermediates of CO₂ reduction
- Targets novel hybrid approaches (with or without H₂)

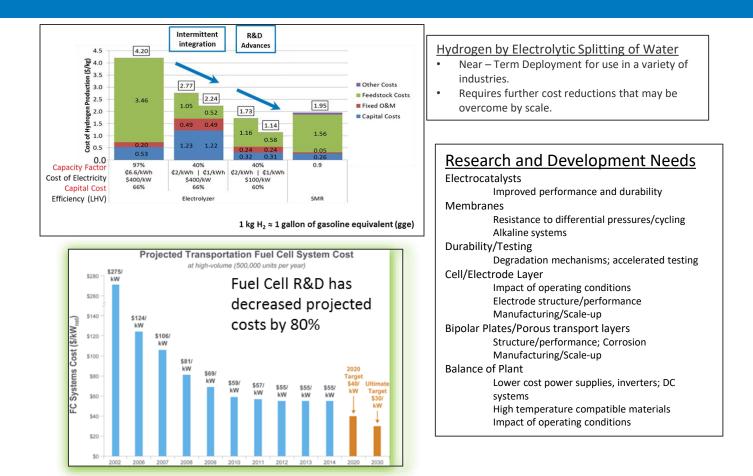
Outcome: New concepts, approaches, and

understanding for chemical (carbon-carbon) bond formation using CO_2 and electrons through electro-catalysis, synthetic biology and advanced hybrid processes

Potential Impact


- Promotes CO₂ utilization and valorization
- Provides alternative route to products through low-cost electricity
- Chemical storage option

Conceptual H2@Scale Energy System

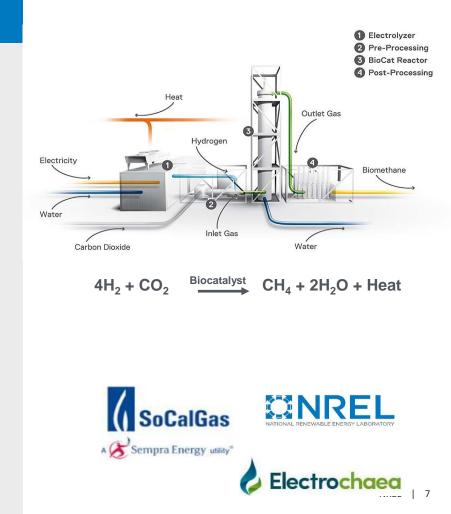

H2@Scale

- Explores the potential for wide-scale H₂ production
- Enable resiliency of the power generation and transmission sectors
- Aligning with diverse Industries such as metal refining, ammonia, chemicals, and fuels upgrading

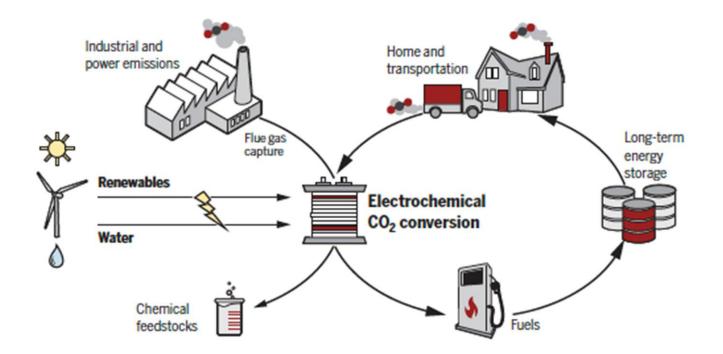
H2@Scale website: http://energy.gov/eere/fuelcells/h2-scale

Pathway to Economical Generation of H₂ by Electrolysis

Renewable Methane Production


Scientific Approach

- Utilize excess electricity production for the electrolysis of water to H₂ and O₂
- Optimized strain of methanogenic archaea to perform methanation under industrial conditions
- 98% Carbon efficiency of CO₂ to CH₄
- Post-processing for pipeline quality natural gas


Significance and Impact

- Potential long term storage strategy via conversion of electricity & CO₂ to CH₄
- High efficiency CO₂ capture and conversion strategy
- Demonstrated route to renewable methane

Electrochemical CO2 Reduction: Where are we now?



NREL's Multi-Scale Electrochemical Capabilities

Rotating Disk Electrode

Flow – Through Single Cell

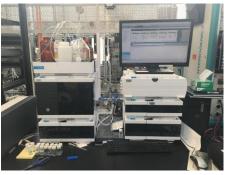
Watts

Flow – Through Stacked System

KiloWatts

MilliWatts

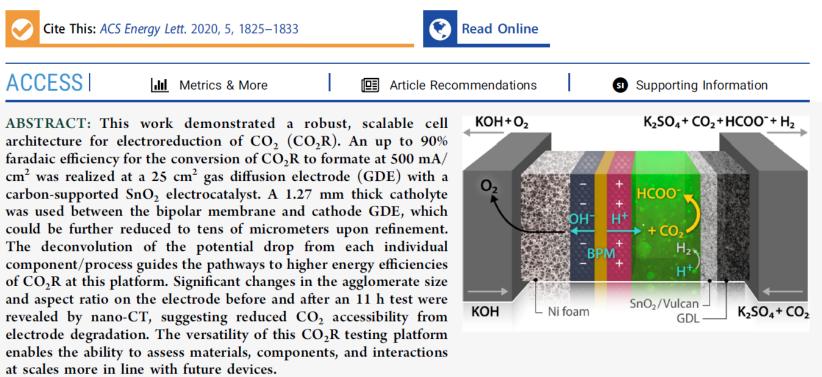
World Class Test Stations


Current Capabilities

- Anode and cathode can flow liquid (0-100 mL/min) or gas (0-4 SLPM)
- In-line automated gas sampling (two Agilent 490 MicroGCs)
 - H_2 , CO, CH₄, C₂H₄, CO₂
- HPLC with autosampler for liquid product analysis
- PEEK-PTFE backpressure (0-60 psig) regulators optimized for dual-phase flow
- Ambient to 85 °C operation
- Safety N₂ purge
- Flammable gas leak detection
- Enclosure ventilation exceeds NREL standard for chemical fume-hoods

GC with sampling manifold

HPLC with autosampler



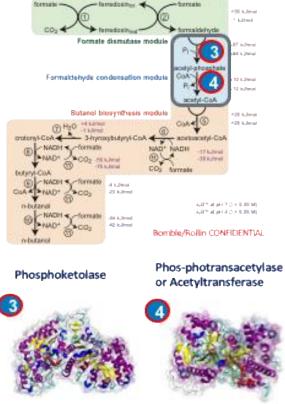
Future Plans

- Four additional stations designed for maximum modularity and ease of and maintenance/modifications
- Time-of-Flight Mass-Spectrometer
 - Real time product analysis

Formate: Identifying Pathways to Higher Energy Efficiencies

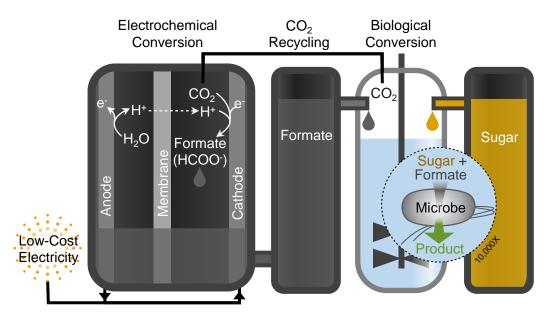
Yingying Chen, Ashlee Vise, W. Ellis Klein, Firat C. Cetinbas, Deborah J. Myers, Wilson A. Smith, Todd G. Deutsch, and K. C. Neyerlin*

Scientific Approach


- Cell free approaches can be directly coupled to electrocatalytic production of formic acid from CO₂. The same electrolyser can be used to recycle CO₂ formed in enzymatic reactions.
- We can leverage enzyme promiscuity to convert formaldehyde to essential intermediates such as acetyl-phosphate and acetyl-CoA
- Focus on Formaldehyde condensation and Butanol biosynthesis modules and use rational design to engineer enzymes for increased stability, enhanced selectivity, and formaldehyde tolerance.

Significance and Impact

- An estimated 2.85 Gt CO₂ and 300 TWh (\$0.02/kWh) are available for utilization each year.
- Developing approaches to convert these feedstocks to liquid fuels or biochemicals using excess electrons will promote efficient energy storage.


Partners

This project will benefit from a collaboration with Global Bioenergies S.A. and Philippe Marliere from Scientist of Fortune.

Electrochemical reduction of CO₂ to improve sugar conversion

• We envision a system in which CO₂ emitted during biological conversion is recycled by electrochemically reducing it to generate formate.

• Formate can be stored and used as an auxiliary energy source to improve biological conversion for a wide variety of hosts, products and processes.

Thank you

www.nrel.gov

Randy D. Cortright, Ph.D. Strategic Lead for Electrons to Molecules Senior Research Advisor

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

