Membrane Integrated Sorbent Adsorption Process for Carbon Capture (Contract No. DE-SC0011885)

Gökhan Alptekin Ambal Jayaraman David Gribble Matthew Cates Douwe Bruinsma

Phase IIB Project Review Meeting

October 14, 2020

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Summary

- The project objective is to demonstrate scalability of a new hybrid postcombustion CO₂ capture process for coal-fired power plants
- The hybrid process uses a polymeric membrane and CO₂ adsorbent system for cost effectively removing CO₂ from flue gas
 - TDA's mesoporous carbon adsorbent
 - MTR's polymeric membrane

Phase I

- Process design and simulation
- Sorbent Optimization and Laboratory Evaluations

Phase II

- Sorbent optimization, multiple-cycle testing, and design/optimization of radial sorbent contactor and bed sequence
- High-fidelity field demonstration of integrated test unit (1.7 kW scale) with coal-derived flue gas

Phase IIB

 Demonstrate process performance and refine economics at 42 kW scale (≈ 25X of prior field of phase II field testing)

Sorbent-Membrane Hybrid Process

Primary Air Fan

- Membrane removes ~50% of CO₂ and almost all water at ~50°C under mild vacuum, (~0.3 atm)
- TDA's sorbent removes remaining CO₂ in the membrane effluent (retentate) ensuring 90+% carbon capture
 - The boiler feed air is used as a sweep gas to facilitate sorbent regeneration
- Advantages
 - Low pressure drop and high performance at the low P_{CO2}
 - Greatly reduced oxygen transfer (from the air side to flue gas side)

TDA Sorbent

- TDA developed a mesoporous carbon sorbent modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at low partial pressures
 - Because CO₂ is not bonded, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4-5 kcal/mol

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354

Sorbent optimization and production scale-up was completed in a separate DOE project (DE-0013105)

Sorbent operation in a VSA system was successfully demonstrated with actual flue gas (DE-0013105)

Phase II - Radial Flow Reactor Development

- In addition to demonstrate the hybrid operation, we have carried out the development of the radial flow reactors
- This design is to reduce the pressure drop experienced in the fixed-bed systems
- An existing 4-bed unit is modified with radial flow reactors

Membrane-Sorbent Tests at the Lab

Retentate (to Sorbent)

 In a SBIR Phase II project, lab and field tests were carried out at a 2-4 scfm (20-40 kg/day CO₂ captured) scale hybrid-membrane sorbent unit with coal-derived flue gas at Western Research Institute (Laramie, WY)

Gen3 Radial Sorbent Bed

Hybrid Performance (3 SCFM)

Continuous 4-Bed Cycling Performance (Cycle# 2,000 - 2,160)

Phase IIB Project – Evaluation in a Larger Prototype Unit

100 SCFM (42 kW) System Design

Skid-Mounted MTR Membrane

Design of the Sorbent Reactors

- Designed as stackable 2-skid system for over-road transport
- 4-Bed sorbent contactor skid houses sorbent beds, regen air blower, vacuum pump, and control cabinet
- Membrane skid houses membrane and associated instrumentation/valving
- All process valving is automated with electropneumatic control with manual controls for membrane bypassing and vacuum inlet stream selection
- All equipment is designed for continuous outdoor operation in C1DII hazardous locations to allow for deployment to various field test sites

4-Bed Sorbent Contactor Skid

TDA's 4th Generation Radial-Flow Sorbent Contactor

Butterfly Valves and Gas Distribution Manifolds

≈ 200 L Sorbent per Vessel Adsorption Time ≈ 60–120 s/Vessel

Fabrication of the Radial Flow Bed Internals

3 Complete Inner Radial Beds (Upside Down) Awaiting Wire Cloth and Outer Pressure Vessel

Complete Inner Basket - 304 SS

Perforated SS Outer Wall Covered in 100 Mesh Wire Cloth

Fabrication of Radial Bed Housing

Outer Pressure-Containing Shell and Heads Tack Welded Around Inner Sorbent Basket

Complex Weldment Fabrication on Welding Positioner

Sorbent Vessel with 5-Way Inlet/Outlet Manifold

13

All 4 Radial Beds Complete with Inlet/Outlet Piping

Assembly of the System

Radial Sorbent Bed (R-410) After Heat Trace and Insulation Installation

Fully assembled unit

Differential Pressure Gauge for Radial Bed 410 Regen Air Heater

Delivery to the Site

TDA Shipment Arriving at WITC

Skid Placement to Painted Alignment Marks

Crane Lifting and Locating DTA Demo System

Main Skid and Auxiliary Skid Sited Dry Fork Station in Background

Results of Test Campaign I - III

- Campaign I only evaluated the sorbent system
- Campaign II resumed testing following a long hiatus stemming from Covid-19 restrictions at TDA and WITC
- All system fixes completed in June 2020
- Successful operation with 94-95% CO₂ capture efficiency was demonstrated in Test Campaigns IIIa and IIIb

	CO				
		Total	Slipped/	Capture	
Test	Time Online	System	Released	Efficiency	
Campaign		Inlet CO2	CO2	Linciency	
	hours	kg	kg	%	
I	129.9	6709	1234	81.6	
II	87	4162	872.3	79	
llla	166	6865	308.3	95.5	
IIIb	135.4	5183	278.5	94.6	
Total	518.3	22918	2692.7	89.1	

48-Hour Data Subset

Low pressure drop through the radial bed reduces parasitic power loses in both directions.

8-Hour Data Subset

20-Minute Data Snapshot

Some variation in capacity and CO₂ slippage was observed for one of the • beds, due to improper packing

CO₂ Removal/Recovery Mass Balance

Good closure of CO₂ mass balance measured on the inlet and outlet ends

Campaign III - Operating Parameters

- A vacuum pressure of 3.5 psia (+/- 0.2 psia) was maintained to remove the CO₂ across the membrane
- The flue gas temperature entering the membrane (and to the most part to the sorbent bed) was varied at 45-50°C range

Campaign III - Performance Overview

Flows Around Sorbent System

 CO_2 recovered from the membrane is recycled to the inlet of the process to increase the CO₂ concentration to the skid (to simulate the recycle to the coal boiler) 23

Campaign IIIb - CO₂ Capture Efficiency

• 95+% CO₂ capture efficiency is achieved with the hybrid system

Aspen Process Modeling (UCI)

Plant Performance

CASE NO.	UNITs	DoE 11	DoE 12	MTR WP Study	TDA + MTR 3	Sorbent Only	Sorbent Only	
CO ₂ capture technology		Reference No Capture	Reference Amine	Membrane Only	Membrane- Sorbent Hybrid	Sorbent Only - Recirculation	Sorbent Only - Steam Purge	
CO ₂ purity from separation Module			95%	80%	80%	95%	95%	
Steam turbine power	kWe	580,400	662,800	780,795	750,371	706,396	696,828	
Total auxiliary consumption	kWe	30,410	112,830	224,605	197,832	156,393	146,829	
Net power output	kWe	549,990	549,970	556,190	552,539	550,003	549,999	
Auxiliary load summary								
Flue gas booster + CO ₂ removal	kWe	0	20,600	50,170	20,630	11,839	7,513	
VSA Vacuum pump	kWe	0	0	37,475	33,578	50,932	49,891	
CO ₂ compression	kWe	0	44,890	75,768	72,900	48,828	45,842	
CO ₂ cryogenic purification	kWe	0	0	20,397	18,675	0	0	
Common Auxiliaries	kWe	30,410	47,340	40,795	52,049	44,794	43,583	
% Net plant efficiency	% HHV	39.3	28.4	28.7	29.6	30.8	32.5	
Net heat rate	kJ/kWh	9,165	12,663	12,585	12,223	11,677	12,462	
Condenser cooling duty	10^6 kJ/h	2,298	1,737	3,077	2,966	2,794	3,035	
Consumables								
As-received coal feed	kg/h	185,759	256,652	256,715	247,755	236,681	224,207	
Carbon captured	%	0	90	90	90	90	90	

- TDA's membrane sorbent hybrid system has a net plant efficiency of 29.6% compared to 28.7% in MTR-Worley Parson Study which used compressed flue gas
 - Energy savings mainly from low pressure operation of membrane
 - More membrane area needed to achieve similar flux, impact on selectivity is minimal
- Comparatively using a sorbent only system with recirculation like the hybrid system will allow us to achieve the 95% purity target in a single system resulting in a net plant efficiency of 30.8%
- Sorbent Only System with VLP Steam Purge could provide 32.5% efficiency

Pressure Drop Constraint

 Parasitic power demand for gas compression is estimated to range from 1% to 3.5% of plant capacity

Reactor Vessel Design / Valve Selection

Sorbent System - Hybrid							
	Stage I			Stage II			
Bed 1							
Bed 2	2						
120s	120s 60s				60s		
		Adsorp	otio	n - F	lue gas flow		
		Desorption - Air Purge flow					
	Δ P=105 mbar						
	Mc	Module size			MW		
	No	. of trains		8			
	No	. beds per train		2			
	Tot	tal no. of beds	16				
	Flu	e gas flow	6	53.0	m3/s		
	со	O2 flow		0.63	tonne/min		
	Ca	pacity		.7%	wt. CO2		
	Be	ed online		1	min		
	Soi	orbent needed		37.2	tonne		
	de	nsity		0.56	tonne/m3		
	Be	d vol.	e	56.4	m3		
	Be	d CSA		6.6	m2		

- Reactor design and valve selection is interdependent
- Double acting pneumatic actuator with travel time of 3-5 seconds were identified

- Sixteen (16) radial beds
- SA516-70 carbon steel, 0.5" thickness, 120 in OD x 565 in T/T

Piping Layout and Costing

- 60 in NPS, 0.375 in thickness (standard schedule) piping for flue gas and air regeneration lines
- Two (2) 12 ft OD flue gas distribution and return manifolds
- 2,000 linear feet, estimated from concept layout
- Weight of steel 240 lb/ft
- Assumed cost of steel \$1.73 / lb (SA-106B)
- Total piping cost \$1,094,679 (CEPCI 607.5 2019)

3-D Layout of the Hybrid Sorbent System

CO₂ Capture Cost

- The cost of CO₂ Capture is estimated as \$38.9/tonne System Cost for hybrid membrane sorbent process
- Based on total capture system cost of \$178.6 MM (including the flue gas treatment subassembly, including blowers, DCC etc.)
- Meets the DOE 2030 Target using two mature technologies (TDA Mesoporous Carbon sorbent and Polaris I membrane)