

Machine Learning Approaches to Accelerate CFD Analyses

Brenda Ng & David Widemann Machine Learning Group LLNL Livermore, CA

Grigorios Panagakos Research Engineer & Teaching Faculty CMU-NETL Pittsburgh, PA

DOE NETL's 2020 FE R&D Project Review Meeting – Carbon Capture October 6, 2020

Vision

CCSI² has a vision to leverage Machine Learning methods on high-dimensional data from CFD models to:

- 1. Reduce computational burden of expensive CFD models
- 2. Inform process models with knowledge derived from CFD results
- 3. Establish control methodologies of the Absorption/Desorption processes

How to improve carbon capture rate while reducing absorber size?

- Investigate the trade-off between increase in absorption performance and the increase in equipment size
- Geometry of shell and tube type heat exchanger

Why does geometry matter?

Why do we need CFD?

- CFD captures the effects of changing the geometry
- Need local information on transport phenomena to understand driving forces

Why do we need CFD in CCSI² ?

- CFD captures the effects of changing the geometry
- Need local information on transport phenomena to understand driving forces
- Can be incorporated into design optimization to optimize the device

CFD is critical for the fundamental understanding that will inform process and system level modeling

VATIONAL

Topology Optimization in Aircraft Design

"Airbus researches use of topology optimization on aircraft wing ribs. It is stated that usage of topology optimization results in around 1000 kg of weight savings per aircraft..."

https://topologyoptimization.wordpress.com/2011/03/11/airbus/

Figure 5.a. Topology optimization design space for 2D airfoil test case.

Figure 5.b Topology optimization results for simple 2D airfoil test case.

Figure 7. 3D printed wing section for a NACA 23015 airfoil.

D. Walker et al. Topology Optimization of an Aircraft Wing, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Meshing, Timestep and Simulation Time

- Range of number of cells: 6 9 M
- $\Delta t = 10^{-5} 10^{-04} sec$
- 3 6 days with 360 cores for 5-20 seconds simulation time

Flow Development for Schwarz-D with CO₂BOL Solvent

Simulation times is a bottleneck that impedes higher-level modeling

9

Deep Learning for Fluid Flow Prediction in the Cloud

Random Shape Generator	•	OpenFOAM simulations	•	Post-processing	•	Neural Network
Random shapes are generated for a diverse simulation data set		CFD simulations are executed. We use the OpenFOAM steady-state solver SimpleFOAM		Extract relevant data from the simulations		Neural Network implementation in TensorFlow (GPU)
Glue-code implemented using CAEML (a CAE Python Library developed by Renumics)						

Figure 1: Deep Learning workflow.

Figure 3: Simulated flow field (left image) and predicted flow field (right image).

Performance for generating the flow field data set and Tensorflow training

Setup	2-D external flow	3-D internal flow
Time for 10.000 simulations	13.2 h	152.5 h
Time for training	23.7 h	48.5 h

Neural network prediction of flow field

Setup	2-D external flow	3-D internal flow
Time for CFD solver	4.7 s	55.0 s
Time of neural network prediction	3 ms	120 ms
Speedup factor w/ deep learning	1566	458

Figure 2: Performance and speedup with neural network prediction.

1 week \rightarrow 6 to 20 min

https://insidehpc.com/2019/01/case-study-deep-learning-for-fluid-flow-prediction-in-the-cloud/

Machine Learning Roadmap

CCSI² has a vision to leverage Machine Learning methods to accelerate high-dimensional CFD models.

Lawrence Livermore National Laboratory

11

Approach: Leverage neural networks to learn fast surrogates for CFD models

ML1 Progress: Fast Surrogate for CFD Simulation Model

Kim et al. (2019), "Deep Fluids: A Generative Network for Parametrized Fluid Simulations"

13

ML1 Approach: DeepFluids

ML1 Approach: DeepFluids

Algorithm 1 Simulation with the Latent Space Integration Network

 $c_{0} \leftarrow G^{\dagger}(\mathbf{u}_{0})$ while simulating from *t* to *t* + 1 do $\mathbf{x}_{t} \leftarrow [\mathbf{c}_{t}; \Delta \mathbf{p}_{t}] \quad // \mathbf{c}_{t} \text{ from previous step, } \mathbf{p} \text{ is given}$ $\mathbf{z}_{t+1} \leftarrow \mathbf{z}_{t} + T(\mathbf{x}_{t}) \quad // \text{ latent code inference}$ $\mathbf{c}_{t+1} \leftarrow [\mathbf{z}_{t+1}; \mathbf{p}_{t+1}]$ $\mathbf{u}_{t+1} \leftarrow G(\mathbf{c}_{t+1}) \quad // \text{ velocity field reconstruction}$ end while

	Grid		Simulation	Speed Up
Scene	Resolution	# Frames	Time (s)	(X)
Smoke Plume	96×128	21,000	0.033	635
Smoke Obstacle	$64 \times 96 \times 64$	6,600	0.491	513
Smoke Inflow	$112 \times 64 \times 32$	3,750	0.128	128
Liquid Drops	96 imes 48 imes 96	7,500	0.172	125
Viscous Dam	96 imes 72 imes 48	600	0.984	716
Rotating Smoke	$48 \times 72 \times 48$	500	0.08	308
Moving Smoke	$48 \times 72 \times 48$	80,000	0.08	308

ML1 Results: Latent Representation Learning

PNNL Data: Volume Fraction

• [TOP] Trained on StarCCM simulations

- 4 output channels: volume fraction, pressure, flow x- and y-velocities
- Initial velocity at top boundary layer set to 6.45e-3 m/s
- [RIGHT] Trained on MantaFlow Smoke Source simulations

PNNL Data: Vertical Velocity

MantaFlow Smoke Source

Returning back to the Machine Learning Roadmap...

17

Approach: Leverage neural networks to learn fast surrogates for CFD models

ML2: Neural Layers to Bridge Knowledge Gaps

Approach: Mix and match (traditional) neural network layers with PDEs

ML2: Neural Layers to Bridge Knowledge Gaps

Dandekar & Barbastathis (2020), "Quantifying the Effect of Quarantine Control in COVID-19 Infectious Spread Using Machine Learning", medRxiv 2020.04.03.20052084

Quarantine strength Q(t)Quarantine population T(t)U = (S(t), I(t), R(t), T(t)) $Q(t) = r(W_n r(W_{n-1} \dots r(W_1 U))) \equiv NN(W, U)$ $W_{i,j}$ Input S(t) $\frac{\mathrm{d}S(t)}{\mathrm{d}t} = -\frac{\beta S(t) I(t)}{N}$ Output $\frac{\mathrm{d}I(t)}{\mathrm{d}t} = \frac{\beta S(t) I(t)}{N} - (\gamma + Q(t)) I(t) =$ I(t)Q(t) $= \frac{\beta S(t) I(t)}{NT} - (\gamma + NN(W, U)) I(t)$ R(t) $\frac{\mathrm{d}R(t)}{\mathrm{d}t} = \gamma I(t)$ T(t) $\frac{\mathrm{d}T(t)}{\mathrm{d}t} = Q(t) I(t) = \mathrm{NN}(W, U) I(t).$ Densely connected (All connections not shown) Lawrence Livermore NATIONAL ENERGY TECHNOLOGY LABORATORY WestVirginiaUniversity National Laboratory THE UNIVERSITY OF TEXAS Los Alamos UNIVERSITY OF 20 NOTRE DAME National Laboratory

ML3: Reinforcement Learning for Optimal Control

Approach: Apply reinforcement learning to optimize device configuration to drive performance

ML3: Control Problems for Absorption/Desorption Processes

- Changes in flue gas flow rate
- Changes in flue gas inlet CO₂ concentration
- Changes in the inlet flue gas temperature

NEW!

ML3: Reinforcement Learning for Optimal Control

• RL agent learns a policy to optimally explore CFD inputs

NEW!

ML3: Reinforcement Learning for Optimal Control RL agent learns a policy to optimally explore CFD inputs ullet**Approach 1** reward = $R(\hat{u}(t_k, x))$ Accelerate simulations **Approach 2** with surrogate models Learn an policy Agent Environment DNN efficient policy $\pi_{\theta}(s, a)$ Surrogate NN: that explores the input space RL needs 1000s of intelligently simulations to train. State action = $(\Delta p, \Delta f)$ Use a surrogate to Run surrogate NN k time steps generate sim data. forward to get surrogate model $\hat{u} \approx u$. parameter θ $\hat{u}(t_k, x)$ observations = $\Psi(\hat{u}(t_k, x))$

Summary

CCSI² has a vision to leverage Machine Learning methods on high-dimensional data from CFD models to:

Reduce computational burden of expensive CFD models
Inform process models with knowledge derived from CFD results
Establish control methodologies of the Absorption/Desorption processes

Our Machine Learning Roadmap will achieve these goals:

- ✓ Fast Surrogates to Mitigate Bottleneck Processes
- ✓ Neural Layers to **Bridge Knowledge Gaps**
- ✓ Reinforcement Learning for Optimal Control

For more information https://www.acceleratecarboncapture.org/

Brenda Ng, ng30@llnl.gov David Widemann, widemann1@llnl.gov Grigorios Panagakos, grigorios.panagakos@netl.doe.gov

Lawrence Livermore National Laboratory K KIDGE National Laboratory

West Virginia University NOTRE DAME

