
DOE NETL’s 2020 FE R&D Project Review Meeting – Carbon Capture
October 6, 2020

Brenda Ng & David Widemann
Machine Learning Group 

LLNL
Livermore, CA

Grigorios Panagakos
Research Engineer & Teaching Faculty

CMU-NETL
Pittsburgh, PA

Machine Learning Approaches 
to Accelerate CFD Analyses



CCSI2 has a vision to leverage Machine Learning methods on high-dimensional 
data from CFD models to:

1. Reduce computational burden of expensive CFD models 
2. Inform process models with knowledge derived from CFD results
3. Establish control methodologies of the Absorption/Desorption processes

Vision
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• Investigate the trade-off between increase in absorption performance 
and the increase in equipment size 

• Geometry of shell and tube type heat exchanger

How to improve carbon capture rate while reducing 
absorber size?
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Why does geometry matter?

T. Femmer et al. Chemical Engineering Journal 273 (2015).

Gyroid

Gyroid



Why do we need CFD?
• CFD captures the effects of changing the geometry
• Need local information on transport phenomena to understand driving forces
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Why do we need CFD in CCSI2 ?
• CFD captures the effects of changing the geometry
• Need local information on transport phenomena to understand driving forces 
• Can be incorporated into design optimization to optimize the device

CFD is critical for 
the fundamental 

understanding that 
will inform process 

and system level 
modeling
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Topology Optimization in Aircraft Design

D. Walker et al. Topology Optimization of an Aircraft Wing, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

“Airbus researches use of topology optimization on aircraft 
wing ribs. It is stated that usage of topology optimization 
results in around 1000 kg of weight savings per aircraft…”

https://topologyoptimization.wordpress.com/2011/03/11/airbus/   

7



Schwartz-D Gyroid Fisher Koch

• Range of number of cells: 6 – 9 M 
• 𝛥𝑡 = 10!" − 10!#$ 𝑠𝑒𝑐
• 3 - 6 days with 360 cores for 5-20 seconds simulation time 

Meshing, Timestep and Simulation Time
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Deep Learning for Fluid Flow Prediction in the Cloud
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1 week à 6 to 20 min

Speedup factor w/ deep learning

https://insidehpc.com/2019/01/case-study-deep-learning-for-fluid-flow-prediction-in-the-cloud/



Machine Learning Roadmap
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Steady-State and Dynamic
Process Models
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CCSI2 has a vision to leverage Machine Learning methods
to accelerate high-dimensional CFD models.

Heat Transfer
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Approach: Leverage neural networks to learn fast surrogates for CFD models
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ML1: Fast Surrogates to Mitigate Bottleneck Processes



ML1 Progress: Fast Surrogate for CFD Simulation Model
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Raschring random packing config
Raschring element properties
Liquid flow rate 
Gas flow rate 
Liquid viscosity 
Liquid density 
Surface tension 
Contact angle
Packed ring surface to volume ratio

Interfacial area 
Effective mass transfer 

fastsloooow

Inputs

Outputs

CFD sim
(high-dim)

Deep
Fluids

Kim et al. (2019), “Deep Fluids: A Generative Network for Parametrized Fluid Simulations”



ML1 Approach: DeepFluids

14

𝑧!

𝑧!"#

Encode input to low-dim latent space

Decode back to high-dim physical space
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ML1 Approach: DeepFluids
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Encoder 𝑮! encodes input
to latent space

Generator 𝑮! decodes back 
to physical space
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Returning back to the Machine Learning Roadmap…
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ML2: Neural Layers to Bridge Knowledge Gaps
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Approach: Mix and match (traditional) neural network layers with PDEs 
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ML2: Neural Layers to Bridge Knowledge Gaps
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Dandekar & Barbastathis (2020), ”Quantifying the Effect of Quarantine Control in 
COVID-19 Infectious Spread Using Machine Learning”, medRxiv 2020.04.03.20052084

Quarantine population 𝑇(𝑡) Quarantine strength 𝑄(𝑡)



ML3: Reinforcement Learning for Optimal Control
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Approach: Apply reinforcement learning to optimize device configuration 
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• Changes in flue gas flow rate
• Changes in flue gas inlet CO2 concentration
• Changes in the inlet flue gas temperature

ML3: Control Problems for Absorption/Desorption Processes
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• RL agent learns a policy to optimally explore CFD inputs

ML3: Reinforcement Learning for Optimal Control
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• RL agent learns a policy to optimally explore CFD inputs

ML3: Reinforcement Learning for Optimal Control
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Approach 1
Accelerate simulations 
with surrogate modelsApproach 2

Learn an 
efficient policy 
that explores 

the input space 
intelligently

RL needs 1000s of 
simulations to train.

Use a surrogate to 
generate sim data. 



CCSI2 has a vision to leverage Machine Learning methods on high-dimensional 
data from CFD models to:

ØReduce computational burden of expensive CFD models 
Ø Inform process models with knowledge derived from CFD results
ØEstablish control methodologies of the Absorption/Desorption processes

Our Machine Learning Roadmap will achieve these goals:

üFast Surrogates to Mitigate Bottleneck Processes
üNeural Layers to Bridge Knowledge Gaps
üReinforcement Learning for Optimal Control

Summary

25



For more information
https://www.acceleratecarboncapture.org/

Brenda Ng, ng30@llnl.gov
David Widemann, widemann1@llnl.gov
Grigorios Panagakos, grigorios.panagakos@netl.doe.gov
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