

DE-FE0031659: Inexpensive and Sustainable Anti-Corrosion Coating for Power Generation Applications

Principal Investigator: Dr. John D. Watkins LumiShield Technologies

> U.S. Department of Energy National Energy Technology Laboratory **Carbon Capture 2020 Integrated Review Webinar** October-5-7 2020

NETL/DOE Federal Project Manager Sai Gollakota

Program Overview

Objectives

- 1. Lab Scale Demonstration of Aluminum Oxide Primer Coating on Carbon Steel
 - Optimize coating process for acid resistance.
 - Test commercially available acid resistant top-coats for adhesion.
 - Form complete composite coating that shows good adhesion, acid resistance and temperature resistance.
- 2. Optimize Top-Coating Chemistry to Maximize Performance
 - Work with partners to develop next generation acid and amine resistant top-coats.
 - Optimize attachment of top-coats to LumiShield aluminum oxide surface treatment.
- 3. Characterize Coatings in Simulated and Realistic Flue Gas Conditions
 - Initial screening by in-house salt spray testing.
 - Simulated acid and base testing by liquid exposure testing.
- 4. Complete Cost-Benefit-Analysis
 - Calculate materials and process costs based on technology development.
 - Develop cost-benefit-analysis in partnership with AECOM to compare with existing coatings.

Program Overview

Proposed Budget

		Project Cos	st		
Project Task		Government Recipient Share Share (\$) (\$)		Total Cost (\$)	% of Project Total
	Budget Peric	od 1 10/01/	2018 – 09/30/201	.9	
	Budget Period 1 Totals:	\$460,046	\$115,012	\$575,058	53.5%
	Budget Peric	od 2 10/01/	2019 - 03/31/202	21	
	Budget Period 2 Totals:	\$400,444	\$100,111	\$500,555	46.5%
	Project Totals:	\$860,490	\$215,122	\$1,075,612	100%

Subcontractor

AECOM

Key Idea: Use electrodeposited aluminum oxide as an adhesive pretreatment for organic coatings.

How Do Electroplated Coatings Work?

- Cathode (-ive) Metal Plating.
- Anode (+ive) Water Splitting.
- Solution:
 - o Soluble metal salts.
 - Conductive electrolyte.
- Electrodeposition is voltage dependent.
 - \circ Voltage = driving force.
 - Current = deposition rate.

Water and gas

diffusion

Acid Flue Gas: H₂O, CO₂, NO_x, SO_x

Stainless Steel

- Good corrosion resistance.
- High price.

Mild Steel

- High strength, less material.
- Vulnerable to corrosion.
- Low price.

The LumiShield Coating is an Enabling Technology for Carbon Capture Systems, lowering capital and maintenance cost.

500 Hours of Salt Spray Exposure Advantages Can be made acid and amine resistant with suitable top-coats. Paint or Powder Top-Coat Cost effective coating to replace LumiShield Coating stainless steel construction. Non-toxic coating to replace heavy **Base Steel** metal-based processes. Challenges Electroplated coating best for Phosphate fabrication but can be challenging as LumiShield + Epoxy Primer point of use technology. Coating umiShield

Project Scope

- COVID-19 shutdown lab for almost 2 months
- Original Project end date 09/30/2020.
- With 6 month no-cost extension new end date

Technical Approach

Aluminum Oxide	Top-Coat	Composite	Cost Benefit
Optimization	Optimization	Optimization	Analysis
 Solution Parameters Process Parameters Parameters Process Parameters Parameters Process <li< td=""><td> 3 top-coat classes Epoxy Phenolic Fluoropolymer Test on steel vs. LumiShield coated steel. </td><td> Optimized aluminum oxide coating mixed with best top-coat. Iterations of different top-coat compositions tested. Real flue gas exposure testing for different composite coatings. Paint or Powder Top-Coat LumiShield Coating Base Steel </td><td> Collaboration with AECOM. Preliminary cost benefit analysis and state point data table after BP1. Updated at the end of BP2. Consider materials, labor and lifetime costs vs existing materials and coatings. </td></li<>	 3 top-coat classes Epoxy Phenolic Fluoropolymer Test on steel vs. LumiShield coated steel. 	 Optimized aluminum oxide coating mixed with best top-coat. Iterations of different top-coat compositions tested. Real flue gas exposure testing for different composite coatings. Paint or Powder Top-Coat LumiShield Coating Base Steel 	 Collaboration with AECOM. Preliminary cost benefit analysis and state point data table after BP1. Updated at the end of BP2. Consider materials, labor and lifetime costs vs existing materials and coatings.

Project Progress

Budget Period	ID	Task Number	Description	Planned Completion Date	Actual Completion Date	Verification Method
1	M-A	1	Updated Project Management Plan	October 30, 2018	10/24/18	Project Management Plan file
1	M-B	1	Kickoff Meeting	December 31, 2018	01/24/19	Presentation file
1	M-C	2	Select Optimal Fabrication Parameters for Preparation of Dense Base Coatings with High Surface Roughness	June 30, 2019	06/26/19	BP1 Q3 Report
1	M-D	3	Complete Preparation of 3 Benchmark Organic Coatings	March 31, 2019	03/31/19	BP1 Q2 Report
1	M-E	3	Complete Characterization of 3 Prototype Organic Coatings	June 30, 2019	06/26/19	BP1 Q3 Report
1	M-F	4	Complete Cost Benefit Analysis Development	September 30, 2019	09/26/19	BP1 Annual Report
2	M-G	5	Complete Screening of 9 Commercial Organic Coatings with Alumina Base Coat	March 31, 2020	06/12/20	BP2 Q3 Report
2	M-H	5	Evaluate 5 organic linker conditions for improved adhesion of organic top-coats to aluminum oxide base coating	March 31, 2021		Final Report
2	M-I	6	Update Cost Benefit Analysis with Optimized Coating Data	December 31, 2020		Final Report

Project delays due to COVID-19 closure, 6 month no-cost extension approved.

BP1 Summary

Patent Applied for - PCT/US2020/016356 "Methods and Compositions for Improved Adherence of Organic Coatings to Materials"

BP1 Summary

Task 4: Initial Cost-Benefit Analysis

- AECOM sub-contract, 3 month effort.
- LumiShield estimates materials cost for aluminum oxide application at scale 0.07\$/ft².
- Best potential components for replacement with power coated mild steel:

Stripper	17%
Absorber	13%
Piping	10-40% but offset by additional fabrication costs.

- "On balance, use of the LumiShield coating with a top coat in lieu of stainless steel for the absorber and stripper vessels may result in a reduction of \$27M in total capital requirements for a carbon capture system achieving 90% capture for a 642 MWe (gross) coal-fired power plant." AECOM, September 26, 2019.
- Some non-quantifiable benefits may also be realized as well as reduced maintenance costs.

Task 5 – Organic Coating Development

- Screen 9 different epoxy powder coatings for adhesion, chemical compatibility and corrosion resistance.
- Test different post-plating treatments to further improve adhesion and corrosion resistance of coating system.

Supplier	Name	Description	Cost	Supplier	Name	Description	Cost
Axalta Sherwin Williams	Alesta 61 Gray Epoxy Powdura Pure Epoxy	Standard Epoxy Powder Topcoat from Task 3 Standard Epoxy	\$5.00 / lb	AkzoNobel	ResiCoat RB-600	Fusion bonded epoxy, mostly for structural parts. Hard waring properties	\$5.91 / lb
		Powder, generally used as primer. Indoor applications, poor weathering.	<i>(</i> , , , , , , , , , , , , , , , , , , ,	тсі	Epoxy Primer	Standard MIL Spec 53022 epoxy primer for chemical resistance.	\$5.89 / Ib
PPG	Envirocron Epoxy Primer	Similar to Sherwin Williams Powdura. Industry standard epoxy primer.	\$5.45 / Ib	тсі	OGF Hybrid Primer	Epoxy Polyester Hybrid. Used for higher adhesion and chemical resistance.	\$4.16 / Ib
AkzoNobel	Interpon 100 Epoxy	Similar to PPG, Sherwin Williams. Epoxy coating for interior applications.	\$6.42 / lb	тсі	TruZinc Epoxy	Epoxy primer containing Zinc for sacrificial protection of steel in corrosive	\$5.44 / Ib
AkzoNobel	ResiCoat PI	Interior Pipe Coating, resistant to acids, bases, and other chemicals.	\$14.12 / lb			environments.	

- Task 5 Organic Coating Development
 - Lifetime study for 67 consecutive plating runs.
 - No variation in coating.

Task 5 – Organic Coating Development

	Scri	be Delami			
	Control	Control	Panel	Panel	Coating Performance
FUG	1	2	1	2	
(A) S.W. Powdura	Fail	0.32	0.18	0.09	57.8% Increase
(B) PPG Envirocron	4.08	3.4	0.95	0.45	81.3% Increase
(C) AkzoNobel	0.1	0.24	0.46	0.38	59.5% Decrease
Interpon					
(D) ResiCoat RB-600	Fail	Fail	Fail	Fail	Total Panel Failure
(E) ResiCoat PI	0.05	0.15	2.2	1.95	95.2% Decrease
(F) TCI Primer	0.35	0.2	1.1	1.6	79.6% Decrease
(G) TCI Hybrid	0.34	1	4.2	4.45	82.2% Decrease
(H) TCI TruZinc	0.3	0.35	1.4	1.05	73.5% Decrease

500 Hours

1000 Hours

	Scril	pe Delamir	nation / o		
	Control	Control	Panel	Panel	Coating Performance
100	1	2	1	2	
(A) S.W. Powdura	1.35	1.18	0.1	0.5	76.4% Increase
(B) PPG Envirocron	Fail	Fail	0.67	1.05	Not Calculable
(C) AkzoNobel	1.28	0.98	2.98	2.14	55.9% Decrease
Interpon					
(D) ResiCoat RB-600	Fail	Fail	Fail	Fail	Total Panel Failure
(E) ResiCoat Pl	0.25	0.72	3.16	4.58	87.4% Decrease
(F) TCI Primer	0.4	0.55	0.92	1.76	64.6% Decrease
(G) TCI Hybrid	0.92	0.9	5.1	3.96	79.9% Decrease
(H) TCI TruZinc	0.95	0.88	2.95	4.28	74.7% Decrease

1500 Hours

	Scri	be Delami	nation /		
	Control	Control	Panel	Panel	Coating Performance
FUG	1	2	1	2	
(A) S.W. Powdura	1.25	4.98	0.25	0.80	83.1% Increase
(B) PPG Envirocron	Fail	Fail	4.78	3.82	Not Calculable
(C) AkzoNobel	1.95	2.08	2.25	4.05	36% Decrease
Interpon					
(D) ResiCoat RB-600	Fail	Fail	Fail	Fail	Total Panel Failure
(E) ResiCoat PI	0.38	0.5	4.36	5.12	90.7% Decrease
(F) TCI Primer	5/18				Incomplete
(G) TCI Hybrid	0.15	0.12	6.45	5.98	97.8% Decrease
(H) TCI TruZinc	5/18				Incomplete

LumiShield Technologies DE-FE0031659

В

CROSS HATCH ADHESION	Acid site 1	Acid site 2	Amine site 1	Amine site 2
S.W. Powdura	5B	-	5B	5B
PPG Envirocron	5B	5B	5B	5B
AkzoNobel Interpon	5B	5B	3B	3B
ResiCoat RB-600	0B	0B	5B	5B
ResiCoat PI	5B	5B	4B	4B
TCI Primer	5B	5B	4B	4B
TCI Hybrid	5B	5B	5B	5B
TCI TruZinc	2B	2B	5B	5B
Interpon 100	5B	5B	3B	3B

- Exposure testing for:
 - Left = 30% MEA, CO₂ sat. 60°C, 6 days.
 - Right = 1M H₂SO₄ room temp, 6 days.
- Adhesion test on exposure site.
- Powdura, Envirocron, Interpon 100, TCI primer, TCI hybrid and AK PI epoxy all passed both tests.

Future

Budget Period 1	– Ending 09/30/2019 - COMPLETE
Task 2	 ✓ Correlate electrochemical characterization with salt spray results. ✓ Validate optimized pulses with top-coat addition.
Task 3	 Comparison of optimized base coatings with polymer top-coats to verify Task 2 coatings and compare with baseline.
Task 4	\checkmark Complete preliminary cost benefit analysis and state point data table in collaboration with AECOM.

Budget Period 2 – 10/01/2019 – 03/31/2021

Task 5	 Screen multiple types of chosen top-coat class to maximize corrosion and chemical resistance. Test sealant treatments on aluminum oxide to better improve adhesion to epoxy top-coat.
Task 6	• Complete final cost benefit analysis and state point data table in collaboration with AECOM.

BP2 Future

Task 5: Investigation of organic linker conditions on epoxy adhesion.

- Hydroxide surface of aluminum oxide already favorable for epoxy chemical binding.
- Functionalized silanes can be used to modify hydroxide groups of aluminum oxide layer to further improve adhesion to epoxy.

Future Development

Scale-up Potential

• LumiShield process successfully scaled up to 100 gallons in partnership with an oil & gas customer.

LumiShield Next Steps

- LumiShield looking to adapt coating as a corrosion resistant paint adhesion layer on other surfaces.
 - AA2024 Aerospace and Air Force / NAVAIR
 - AA7075 Navy and ocean facing applications
 - Nickel plated Automotive
 - Zinc coated structural applications
- Water handling adaptation for optimized coatings in brine treatment and pipe parity.

Acknowledgements

NETL

Project Manager Contract Specialist Sai Gollakota Jessica Adams

This material is based upon work supported by the Department of Energy under Award Number DE-FE0031659.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Summary

	Tasks 3/5: Powder Coated Epoxy - Powdura
Top-Coat	
Organic Seal	lask 5: Optimized Organic Linker – In Progress
Aluminum Oxide	
Mild Steel	Task 2: Optimized Aluminum Oxide

Supported by the National Energy Technology Laboratory Project: DE-FE0031659

Microscope Image of Aluminum Oxide coating.

Remaining:

- 1. Organic Linker Conditions.
- 2. Realistic Flue Gas Exposure Test.
- 3. Final Cost-Benefit Analysis and State Point Data Table.

Appendix

Organization Chart

Management Team

PI: John Watkins

Project Team

Zach Kaufman

Blake Woodyard

Project Support

Tasks 4 and 6 Cost-Benefit Analysis

Consultants

Hunaid Nulwala Polymer SME Advice for optimization of topcoat in Tasks 3 and 5

Prof. Stanko Brankovic Electrodeposition SME Electrodeposition Advice for Tasks 2 and 5

Tasks 3 and 5 Application of epoxy powder coatings to aluminum oxide test samples

John Larson

Spiro Karoubalis

Gantt Chart

LumiShield