Gap Analysis for Modular Scale Pre-Combustion CO₂ Capture

Kathryn Smith Scott Chen Nicholas Siefert

Carbon Capture Project Review Meeting October 6, 2020

Transformational Carbon Capture FWP Task 14

- Task 14: Modular CO₂ Capture Processes for Integration with Modular Scale Gasification Technologies.
- Task Objective: To assess the potential of integrating small-scale modular pre-combustion CO₂ capture technologies with small-scale modular coal gasification technologies.
- Outcomes: Report that includes a literature review, thermodynamic modelling and economical screening of modular scale pre-combustion carbon capture technologies.

The **Gap Analysis Report** can be used to guide future R&D of pre-combustion CO_2 capture to ensure alignment with future gasification processes and applications.

U.S. DEPARTMENT OF

From large scale...

Duke Energy IGCC power plant

2 x GE gasifiers

https://boilermakers.org/news/headlines/duke-completes-worlds-largest-igcc-plant https://www.modernpowersystems.com/features/featuregasifier-projects-and-igcc-the-big-picture-4188432 https://www.zeton.com/industries/gas-to-liquids-synfuels/

From large scale...

To modular scale...

Duke Energy IGCC power plant

2 x GE gasifiers

Transportation of modular plant (from Zeton website)

Modular manufacturing plants (from Zeton website)

https://boilermakers.org/news/headlines/duke-completes-worlds-largest-igcc-plant https://www.modernpowersystems.com/features/featuregasifier-projects-and-igcc-the-big-picture-4188432 https://www.zeton.com/industries/gas-to-liquids-synfuels/

Literature Review & Gap Analysis Report

1 - Review of modular gasification systems

- Gasification Market electricity generation (IGCC) and other syngas applications
- Gasification Technology current options and future trends
- Syngas properties and syngas processing requirements

2 - Review of CO_2 capture technologies for modular gasification systems

- Solvent, membrane, sorbent, hybrid, integrated processes
- What will encourage successful implementation of modular scale pre-combustion carbon capture technology?
- 3 Efficiency screening of carbon capture technologies for modular gasification systems
 - Energy-only analyses to assess thermodynamic efficiency of promising capture technologies
- 4 Preliminary cost assessments for selected CO₂ capture technologies
 - Economic screening of baseline capture process at full scale and modular scale
 - Economic screening of other capture technologies at modular scale
- 5 Recommendations for integration of CO_2 capture technologies with modular gasification applications

Figures from https://www.globalsyngas.org/resources/the-gasification-industry/

Syngas & Derivatives Market by Production Technology, Gasifier Type, Feedstock, Application and Region - Global Forecast to 2025, Report ID: 51257.

Key findings:

• Global syngas production is increasing

Figures from https://www.globalsyngas.org/resources/the-gasification-industry

Syngas & Derivatives Market by Production Technology, Gasifier Type, Feedstock, Application and Region - Global Forecast to 2025, Report ID: 512572

Key findings:

- Global syngas production is increasing
- Majority of syngas production growth is occurring in Asia (particularly China)

Figures from https://www.globalsyngas.org/resources/the-gasification-industr

Syngas & Derivatives Market by Production Technology, Gasifier Type, Feedstock, Application and Region - Global Forecast to 2025, Report ID: 512572

Key findings:

- Global syngas production is increasing
- Majority of syngas production growth is occurring in Asia (particularly China)
- Most syngas is being used for production of chemicals
- Potential for global growth in production of syngas for producing gaseous fuels (due to low access to natural gas in countries outside of U.S.)

U.S. DEPARTMENT OF Figures from https://www.globals

Power

Liquid fuels

Chemicals

Figures from https://www.globalsyngas.org/resources/the-gasification-industry/

Gaseous fuels

Syngas & Derivatives Market by Production Technology, Gasifier Type, Feedstock, Application and Region - Global Forecast to 2025, Report ID: 5125724

Key findings:

Cen./So.

America

Waste

No. America

Planned (2019)

Construction (2016)

Biomass

Operating (2014)

- Global syngas production is increasing
- Majority of syngas production growth is occurring in Asia (particularly China)
- Most syngas is being used for production of chemicals
- Potential for global growth in production of syngas for producing gaseous fuels (due to low access to natural gas in countries outside of U.S.)
- Coal is still the dominant feedstock for gasification processes
- Biomass/waste is projected to be the fastest-growing feedstock in the syngas & derivatives market for 2020-2025¹

Gas

Petcoke

Europe

Figure adapted from: https://netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/chemicals

Gasification Applications

- Coal gasification demand for non-power applications is increasing.
- Specifically, there is rising demand for syngas & derivatives such as methanol, ammonia, and FT synthesis products to produce chemical intermediates.
- Polygeneration gasification power plants, which produce multiple products including electricity from the same initial stream of syngas, have promising potential for future development as the chemical products often realize a higher added value in comparison to pure electricity generation

Figure adapted from: https://netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/chemicals

Gasification Applications

- Coal gasification demand for non-power applications is increasing.
- Specifically, there is rising demand for syngas & derivatives such as methanol, ammonia, and FT synthesis products to produce chemical intermediates.
- Polygeneration gasification power plants, which produce multiple products including electricity from the same initial stream of syngas, have promising potential for future development as the chemical products often realize a higher added value in comparison to pure electricity generation
- Applications highlighted in red are discussed in the Gap Analysis Report.

Power generation from coal gasification

IGCC with pre-combustion CO₂ capture:

ADVANTAGES

- + Lower emissions & higher efficiency
- + Lower cost mercury removal and CO₂ removal
- + Lower water use
- + Product flexibility

CHALLENGES

- Costs (high capital costs, uncertainty in costs, need for equipment licences, financing issues...)
- Low availability (due to high complexity)
- Need for consistent feedstock (composition and rates)
- Long construction & commissioning time
- Low NG prices (in U.S.)

Integrated gasification combined cycle power plant with $\rm CO_2$ capture

- Mass production of equipment
- Advanced manufacturing techniques
- Multiple parallel modular scale units will improve plant availability
- Standard equipment, rather than licensed commercial processes
- Pre-assembly and testing before shipment to site

Modular design

- Mass production of equipment
- Advanced manufacturing techniques
- Multiple parallel modular scale units will improve plant availability
- Standard equipment, rather than licensed commercial processes
- Pre-assembly and testing before shipment to site

Location

- Plant needs to be flexible to changing environmental regulations
- May be brown vs. green field
- Water may be scarce
- Need for multiple products (e.g. power and fertilizer)
- Make use of local feedstock (& limit fuel imports)

- Mass production of equipment
- Advanced manufacturing techniques
- Multiple parallel modular scale units will improve plant availability
- Standard equipment, rather than licensed commercial processes
- Pre-assembly and testing before shipment to site

<u>Diverse</u> <u>feedstocks</u>

- Coal (bituminous, lignite, etc)
- Petcoke
- Waste coal & coal fines
- Municipal Solid Waste (MSW)
- Biomass
- Petroleum
- Gas co-feed

Location

- Plant needs to be flexible to changing environmental regulations
- May be brown vs. green field
- Water may be scarce
- Need for multiple products (e.g. power and fertilizer)
- Make use of local feedstock (& limit fuel imports)

- Mass production of equipment
- Advanced manufacturing techniques
- Multiple parallel modular scale units will improve plant availability
- Standard equipment, rather than licensed commercial processes
- Pre-assembly and testing before shipment to site

<u>Diverse</u> <u>feedstocks</u>

- Coal (bituminous, lignite, etc)
- Petcoke
- Waste coal & coal fines
- Municipal Solid Waste (MSW)
- Biomass
- Petroleum
- Gas co-feed

Location

- Plant needs to be flexible to changing environmental regulations
- May be brown vs. green field
- Water may be scarce
- Need for multiple products (e.g. power and fertilizer)
- Make use of local feedstock (& limit fuel imports)

Polygeneration

- Provides multiple valuable products (e.g. production of fertilizer in rural areas)
- Reduces uncertainties (adds a new revenue stream)
- Potential to integrate with intermittent renewable power

Future R&D for Gasification & CO₂ Capture Processes

• Syngas processing including CO₂ capture will be required.

Goal of Gap Analysis Report is to help answer:

1. What are the properties of the raw syngas from different gasification systems?

- 2. What are the syngas requirements for different end products?
- 3. Considering the different syngas properties and requirements for end products, what pre-combustion carbon capture technologies are best suited at modular scale?

1. What are the properties of the raw syngas from different gasification systems?

Feedstock
Gasifier type
Oxidation conditions
Operating conditions
etc...

Gasifier characteristics and typical raw syngas composition

				/ 1 /					•					
Gasifier technology	Shell Coal Gasification Process		Gasification		E-Gas		GE	HTW (High Temperature Winkler)		KBR transport gasifier (TRIGTM)	Transport gasifier (TRIGTM) – Kemper project	BG (British Ga		Sasol-Lurgi
Gasifier type	Entrained flow		Entrained flow		Entrained flow		Entrained flow	Fluidized	lbed	Fluidized bed	Fluidized bed	Moving	gbed	Moving bed
Feedstock	Bituminous coal	Lignite	Bituminous coal	Lignite	Bituminous coal	Lignite	Bituminous coal	Lignite	Lignite	Sub-bituminous coal	Lignite	Bituminous coal	Lignite	Bituminous coal
Coal size, mm	<0.1		<0.1		<0.1		<0.1	0.5-5	0.5-5	<2.5-6	0.3-0.5	Lump (5-	50 m m)	Lump (5-50 mm)
Oxidant	oxygen		oxyge	n	oxyge	n	oxygen	oxygen + steam	air	oxygen	air	охуд	en	oxygen
Pressure, MPa	2-4.5		2.5-4		2-4.1		3-8	2.5-3	2.5-3	1.5	<3.6	2.5-	7	3.1
Exit gas temperature, °C	900 (after internal gas quench)		170-230 1040 (after internal quench)		ļ	760 (after syngas cooler) 200-300 (after quenching)	800-900	800-900	930	950	260-700 (typi	cally<540)	200-650	
Proven products / Applications	Power, chemicals		Power, che	micals	powe	r	Power, chemicals	Chemicals	Chemicals	Power	Power, CO ₂ for EOR, chemicals (H ₂ SO ₄ , NH ₃)	Power (sm chemi	· · ·	Power, chemicals & liquid fuels
Feedstock→ Syngas composition (dry basis) vol%↓	Bituminous coal	Lignite	Bituminous coal	Lignite	Bituminous coal	Lignite	Bituminous coal	Low ash lignite (Oxygen + steam blown)	High ash lignite (Air blown)	Sub-bituminous coal	Lignite	Bituminous coal	Lignite	Bituminous coal
H_2	27.2	28.4	26.6	31.0	37.5	37.4	36.3	35.8	16.3	36.2	12.2	31.6	28.3	55.2
CO	64.4	62.4	63.1	55.1	50.0	33.2	47.4	35.7	21.7	41.3	19.4	54.8	56.5	31.2
	1.5	2.9	2.9	8.01	8.9	26.2	12.9	22.8	8.8	17.7	9.37	3.47	2.83	5.9
CH ₄	0.03	< 0.1	<0.1	< 0.1	0.6	0.15	0.12	4.9	1.8	3.1	2.95	4.55	6.05	4.7
$N_2 + Ar$	5.3	5.4	5.4	4.31	1.5	1.9	1.92	0.61	50.5	1.3	55.4	3.95	6.05	1.5
H ₂ S	1.3	0.3	0.45	0.2	1.0	0.46	1.20	0.12	0.11	0.11	0.36	1.20	0.30	0.95
COS	0.1	<0.1	0.04	0.02	0.11	0.15	0.02	0.00	0.00	0.00	0.02	0.12	0.00	0.04
NH ₃ + HCN	0.02	< 0.1	1.4	1.2	0.22	0.30	0.12	0.18	0.81	0.32	0.36	0.24	0.00	0.53
HCI	0.03	< 0.10	-	-	0.11	0.15	0.02	-	-	-	-	0.04	0.00	0.00
C _n H _m	-	-	-	-	-	-	-	-	-	-	-	0.24	0.61	0.32

ed from: Wang, T. & Stiegel, G. 2017, Integrated Gasification Combined Cycle (IGCC) Technologies, Woodhead Publishing

Carpenter, A.M. 2008, Polygeneration from coal, CCC/139, I.C.C. Centre.

Contaminant limitations (particulates, NH₃, HCN, sulfur, etc)

➢ Heating value

≻H₂:CO ratio

➢Temperature

➢ Pressure

U.S. DEPARTMENT OF

≻etc

Clean Syngas

2. What are the syngas requirements for different end products?

Desirable syngas properties for different applications

Product/Application	Variable	Optimum value	Product/Application	Variable	Optimum value
	H ₂ /CO	n/a (unless CO ₂ capture required)			High (∞)
	$H_2S + COS + CS_2$			_	Not important (WGS will be required)
	Particulates	11		Hydrocarbons	
	Hydrogen Halides (HCl + HF)			-	Low
	Alkalis (Na $+$ K)				High (required for WGS)
Electricity/IGCC		Not Critical	Hydrogen		< 1ppm
(gas turbine)	Hydrocarbons			Particulates	
(guo turonic)	•	Covers heating value			Unimportant
		Can be used in WGS & to control NOx			~28 bar
	Heating Value	High (improves efficiency)			100–200 °C
	Pressure			H ₂ /CO	
	Temperature	500-600 °C			Low
	$H_2/CO = 0.6 - 2$ (depends on catalyst) $CO_2 = Low (1-2\%)$			Hydrocarbons	
				-	Low
	Hydrocarbons		Methanol	H ₂ O	Low
	NH ₃ +HCN			Sulfur	<1 ppm
Fischer-Tropsch (F-T)		High (required fro WGS)		Particulates	* *
Synthesis of	Sulfur (H ₂ S + COS + CS_2)			Heating value	Unimportant
Chemicals/fuels	Particulates			Pressure	~50 bar (liquid) ~140 bar (gas phase)
,,,	Heating value	Unimportant		Temperature	100 – 200 °C
	Pressure ~20 - 30 bar Temperature 200–300 °C (Co catalyst) or 300-400 °C (Fe catalyst)			H_2/N_2	3
			Ammonia	$CO + CO_2 + H_2O$	<30 ppm
				Sulfur	<1 ppm
	$H_2/CO 3:1$ $H_2 10\% max$			Inerts (including methane)	<2 % minimum
Synthetic Natural Gas (SNG)				NH ₃ /CO ₂	2.95
	CO ₂		Urea	CO ₂ stream	>98.5 mol% CO ₂
	$(H_2/(3CO+4CO_2))$ 0.98-1.03				<0.15 mol% H ₂
					<10 ppmv methanol

Process

stream

containing

CO., Water,

SOx, NOx, N

3. Considering the different syngas properties and requirements for end products, what pre-combustion carbon capture technologies are best suited at modular scale?

- Literature review of CO_2 capture processes
- Thermodynamic (energy) analysis of promising CO_2 capture processes
- Economic screening of promising CO₂ capture processes
- Ideal modular pre-combustion carbon capture processes:

Captured CO.

- ✓ Minimal heating/cooling of syngas
- ✓ Integration of processes

Other gases

✓ Low capital cost & modular design

CO removed

Vater removed

...

SOx, NOx

removed

©CO2CRC

CO, rich solvent →

Flue gas

U.S. DEPARTMENT OF

Capture Technology	R&D focus for modular scale					
Solvent absorption	 Increase working capacity of solvent Process intensification (eg. membrane contactor, novel packing) Improve CO₂/H₂ selectivity Reduce corrosivity & volatility 					
Sorbents	 Process design or sorbents that avoid cyclic operation Sorbents with higher capacity and better selectivity for CO₂ (over H₂, N₂, CO) Better sorbent stability and water resistance 					
Membranes • H_2 -selective • CO_2 -selective	 Improve permeability & selectivity Improve resistance to contaminants (eg. Sulfur) Improve membrane stability (thermal, chemical & mechanical) 					
Integrated and hybrid processes	 Sorption Enhanced Water Gas Shift (SEWGS) Water Gas Shift Membrane Reactor (WGSMR) Membranes combined with solvents Hybrid solvents (physical/chemical solvent process eg. Sulfinol) Pressure Temperature Swing Adsorption (PTSA) process 					

Thermodynamic Analysis / Efficiency Screening

- Thermodynamic analysis of promising carbon capture technologies was completed to compare energy performance (using ProTreat Software)

Thermodynamic Analysis Results

Performance Summary	Reference – Selexol solvent	SEWGS PSA	Membrane - H ₂ selective	Membrane - CO ₂ selective	WGSMR - H ₂ selective	WGSMR - CO ₂ selective
Combustion turbine power, MWe	464	485	455	477	462	496
Sweet gas expander power, MWe	3	12	0	11	0	15
HP	54	47	52	58	54	56
IP	86	115	101	93	109	104
LP	133	106	134	117	132	113
Total steam turbine power, MWe	274	268	287	267	295	274
Total Gross Power, MWe	741	765	742	755	756	785
CO2 compression, MWe	31.7	43.1	8.0	19.7	8.0	27.5
Air separation unit main air compressor, MWe	71.3	71.3	71.3	71.3	71.3	71.3
Air separation unit booster compressor, MWe	5.6	5.6	5.6	5.6	5.6	5.6
N ₂ compressors, MWe	36.6	36.6	36.6	36.6	36.6	36.6
Acid gas removal, MWe	11.6	11.6	11.6	11.6	11.6	11.6
Balance of plant, MWe	28.1	28.1	28.1	28.1	28.1	28.1
Total auxiliaries, MWe	185	196	161	173	161	181
Net power, MWe	556	569	581	582	595	604
HHV net plant efficiency	34%	35%	35%	35%	36%	37%
HHV Net Plant Heat Rate, kJ/kWh	10675	10446	10229	10201	9976	9832

Economic Screening – Physical solvent CO₂ capture

- Main disadvantage of modular approach is the loss of economy of scale
- Economic screening was completed for a CO₂ capture plant using a physical solvent absorption process at different power plant scales
- Analysis was completed by Husain Ashkanani & Dr Badie Morsi from University of Pittsburgh

ΔΤΙΟΝΔΙ

University of

Figure: Relative change in CO_2 captured, CAPEX, OPEX & LCOC as power plant scale is reduced from 500 to 50 MW

- Levelized cost of capture (LCOC) was calculated at different power plant scales
 - (Note: LCOC is for capture plant only and does not include WGS or changes to power cycle output)
- LCOC increased by ~ 40 % as power plant scale was reduced from 550 to 50 MW
- CAPEX per MW at modular scale was higher than the fullscale plant
- Highlights the importance of reducing CAPEX of modular scale capture processes

Ashkanani, H., et al. (2020). "Levelized Cost of CO₂ Captured Using Five Physical Solvents in Pre-combustion Applications". International Journal of Greenhouse Gas Control 101: 103135 Ashkanani, H., et al. (2020). "Effect of Power Plant Capacity on the CAPEX, OPEX, and LCOC of the CO2 Capture Process in Pre-Combustion Applications". 37th Annual International Pittsburgh Coal Conference, Virtual

Applicable CO₂ capture processes for different gasification processes and end-use applications at <u>modular</u> scale

Syngas application→ Gasifier type & feedstock↓	Electricity generation only (IGCC with CO ₂ capture)	H ₂ -Refinery / Ammonia	F-T Chemicals / Methanol / SNG			
Oxygen-Blown Entrained Flow Gasifier (Coal/Pet Coke)	 Membrane/MR (H₂-selective & CO₂-selective) SEWGS (PSA and high temp TSA) Sorbent Solvent Hybrid options eg. H₂-selective membrane / solvent 	 Membrane/MR (H₂-Selective) Hybrid options with H₂-selective membrane Solvent Sorbent (PSA) SEWGS (PSA, relatively low recovery) Large amounts of N₂ will complicate the 	1			
Air-blown Transport Gasifier (Lignite)	 SEWGS (PSA) Solvent (CO₂ & H₂S selective) Membrane (high CO₂ selectivity) 	 equipment size and hence capital cost of all steps (gasification, WGS reaction, gas cleanup, CO₂ removal). •For some chemical processes like F-T and methanol, N₂ may adversely impact conversion if not removed before synthesis. 				
Oxygen-Blown Moving Bed Gasifier (Mixed Feedstock) High C1, C2, C3 Case	 Solvent (eg. MDEA) SEWGS (90% CO₂ capture is difficult with approx. >10% C1 +) Membrane (CO₂ selective facilitated transport membrane) 	 Hybrid process with H₂-selective membrane and: Solvent (eg. MDEA) SEWGS 	 SEWGS with upstream H₂S/NH₃/HCN removal and tar cracking Solvent (eg. MDEA) 			

Conclusions

GASIFICATION MARKET & TECHNOLOGY

- Global demand for coal gasification processes is increasing.
- Modular scale gasification will enable the use of mass manufacturing techniques, standard equipment, improved quality, quick assembly, and lower costs.
- A flexible and diverse path for further growth of coal gasification technology is through polygeneration ie. applications for power generation & production of other products like chemicals.
- Deployment of multiple small-scale gasifiers, rather than a few centralized large gasifiers, can increase the types of gasifier feedstock and potentially allow co-feeding of low cost or no cost feedstocks.
- IGCC power generation can provide low-cost, low-emission energy from locally sourced coal with superior carbon capture capabilities.
- Air blown gasification processes are unlikely to be suitable at modular scale for non-power applications due to the large amount of N_2 in the syngas which will increase the required equipment sizes and hence capital costs of all steps (gasification, gas cleanup, WGS reactor, CO_2 removal).
- All gasification applications will require syngas processing including CO₂ capture.

Conclusions

MODULAR PRE-COMBUSTION CO₂ CAPTURE

- R&D of modular scale CO₂ capture technologies is required, particularly to reduce CAPEX.
- Capture technologies that operate near the WGS syngas temperature and have low capital costs show most promise for precombustion CO₂ capture at modular scale.
 - Solvents: waste heat driven physical solvents & use of novel equipment (e.g. membrane contactors).
 - Membranes: H_2 -selective membranes coupled with N_2 sweep; H_2 -selective membrane coupled with a downstream waste heat driven solvent process for $H_2S \& CO_2$ separation.
 - Sorbents: High temperature sorbents, particularly integrated with WGS.

EFFICIENCY SCREENING

• H_2 -selective and CO_2 -selective membrane reactors showed the best energy performance with net plant efficiencies of 36 % and 37 % respectively (compared to 33.7% for the baseline Selexol process).

ECONOMIC SCREENING

- For physical solvent absorption, as power plant size was reduced from full scale (500MW) to modular scale (50MW):
 - LCOC increased by ~ 40%.
 - Capital costs represented a larger portion of the LCOC at modular scale.

Future Work

- NATIONAL ENERGY TECHNOLOGY LABORATORY
- Work with NETL SEA on economic screening of modular capture processes (membrane, sorbent, etc...)
- Consider and develop modular scale polygeneration cases
- Assess performance of compact hybrid solvent-membrane system developed by NETL/RIC novel and traditional physical solvent downstream of H₂-separation membrane

Acknowledgements

- Co-authors Scott Chen (Carbon Capture Scientific) & Nick Siefert (NETL)
- NETL pre-combustion solvent research group
- Badie Morsi & Husain Ashkanani (Department of Chemical & Petroleum Engineering, University of Pittsburgh)
- Randall Gemmen, David Hopkinson, Kevin Resnik, Tim Fout, Dan Hancu and Travis Shultz (U.S. Department of Energy, National Energy Technology Laboratory)
- Lynn Brickett (U.S. Department of Energy, Office of Fossil Energy)

Disclaimers & Copyright Status

- Notice: Information from this server resides on a computer system funded by the U.S. Department of Energy. Anyone using this system consents to having their use monitored by system or security personnel.
- **Disclaimer of Liability:** This system is made available by an agency of the United States Government. Neither the United States Government, the Department of Energy, the National Energy Technology Laboratory, nor any of their employees, makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
- **Disclaimer of Endorsement:** Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor by the United States Government, the Department of Energy, or the National Energy Technology Laboratory. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, the Department of Energy, or the National Energy Laboratory, and shall not be used for advertising or product endorsement purposes.
- **Copyright Status:** Most of the information available on this server is in the public domain and therefore not copyrighted. However, some of the information is copyrighted by third parties and is made available under a license granted for use by or for the government. For non-government uses, the user is responsible for securing the proper permission from the copyright holder.

