

Scale-Up and Testing of Advanced Polaris Membrane CO₂ Capture Technology (DE-FE0031591)

Vincent Batoon, David Hicks, Ivy Huang, Thomas Hofmann, Jay Kniep, Tim Merkel, Craig Paulaha, Erik Westling

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Capture - 2020 Integrated Review Webinar
October 7, 2020

Outline

- Project overview
- Technology background
- Project objectives
- Progress to date

Project Overview

Award name: Scale-Up and Testing of Advanced Polaris Membrane CO₂ Capture Technology (DE-FE0031591)

Project period: 8/1/18 to 12/31/21

Funding: \$8.2 million DOE; \$2.6 million cost share (\$10.7 million total)

DOE program manager: Isaac "Andy" Aurelio

Participants: MTR, TCM, Trimeric, Siemens/Dresser Rand, WorleyParsons

Project scope: Design, build, and operate a system at TCM with Gen 2 Polaris modules

Project plan: The project is organized in three phases:

- Phase 1 Design system, fabricate membrane
- Phase 2 Build and install system at TCM
- Phase 3 Operate system, analyze results, decommissioning

MTR/DOE Development Timeline

Current MTR Projects

Self-Assembly Isoporous Supports, CA (DE-FE31596) • Transformational new membrane (TRL3 – 4)

2021

2025

Reduces membrane area and energy use

Pilot Testing at TCM, Norway (DE-FE0031591)

2020

- Gen 2 Polaris™ membrane
- Low pressure-drop modules

2019

2018

Containerized skid, 1 MW pilot scale

2022

2023

2024

Background: Process & Material Developments

Selective Exhaust Gas Recycle Design

Polaris™ Membranes

- Selective recycle to boiler was validated in testing at B&W
- Gen 1 Polaris evaluated in extensive testing at NCCC (>11,000 hours)

Background: Small Pilot at NCCC

- Conducted comparison of Gen1 and 2 membrane
- CO₂ removal performance was good, but pressure drop was relatively high

- Membranes are simple and compact
- MTR pilot system was tested at NCCC and B&W

NCCC Testing Confirmed Better Gen2 Performance -

Higher permeance reduces capital cost and footprint

New Modules Have Lower Pressure Drop

Module size

Module pressure-drop

Reduced pressure-drop with new module saves ~15 MW_e of energy at full-scale

Membrane Capture Cost vs Rate

- Membranes are best for bulk separations. There is a sweet spot for the technology between 50 – 80% capture
- Selective recycle design reduces capture cost by as much as \$25/tonne at 90% capture (including boiler de-rate measured at B&W)

Project Objectives

- Scale-up Gen 2 Polaris packaged in low-pressure-drop, lowcost module stacks and test at TCM
- Demonstrate "containerized" skid as final form factor for future large-scale systems
- Test pilot system (~1 MW) over range of CO₂ capture rates and feed CO₂ content
- With partners, update TEA

TCM Test Will Use Improved Modules

Prototype at NCCC/B&W 2015-17

Polaris Planar Stack at TCM 2021

New module housing is low-cost, lightweight

Planar Modules Have Been Assembled

A Single Planar Polaris Module

A Module Stack

All Polaris membrane modules for TCM test skid have been finished and Q/C tested

Containerized Skid at TCM

Cutaway of Container Skid with Membrane Stacks

Layout for Skid at TCM

Membrane skid will be installed at TCM "3rd site" being developed for new technologies

TCM Site Preparation

View of TCM with 3rd site in foreground

Close up view of 3rd site foundation

• Site is ready for system installation

Membrane Skid Design

- 2 stage system with ability to test air sweep step (stream 5) and varying feed CO₂ content using recycle (stream 9)
- Can test a range of capture rates from 50-90%
- System will produce ~85% CO₂;
 does not include CPU
- Skid design finalized at the end of 2019 after Hazop with TCM

Membrane Skid GA Drawing

- System contains four membrane module stacks on the top floor container
- Bottom floor houses fans, vacuum pumps, controls, BOP
- Construction is ongoing and has been impacted by Covid-19; supply chain and fabricator delays
- FAT now scheduled for end of October

Preliminary Test Plan

- Vary capture rate without sweep step or spillback
- Vary capture rate with sweep step using spillback to mimic enriched CO₂ feed content
- During these parametric steady state tests, monitor separation efficiency, system pressure drops, and gas compositions to CPU
- Run dynamic tests (startup/shutdown, load change) to document membrane response time
- At end of program, vary particulate feed to system and monitor fouling/pressure drop
- Final test plan to include input from CCSI2

Current Status -

- All Gen 2 Polaris membrane modules have been made and Q/C tested; ready for installation on the TCM skid
- System is under construction; FAT is planned for the end of October
- TCM site preparation is complete; ready to receive system
- Plan is for skid to be delivered to TCM and positioned at site by the end of the year
- Testing at TCM (BP3) planned for first half of 2021

Path Forward: Large Pilot System

- Containerized membrane stack, demonstrated at TCM, is envisioned as the final form factor for this capture technology
- Future, larger systems, such as the proposed large pilot at the Wyoming ITC, will simply use multiples of this modular building block

Summary

- Main goal is to validate recent innovations in membranes (Gen 2 Polaris) and modules (low-pressure-drop) in field testing at TCM
- Membranes will be packaged in a container that represents the final form factor for this capture technology
- Project is nearing the end of the construction phase (BP2) with testing (BP3) planned in 2021

Acknowledgements

- U.S. Department of Energy, National Energy Technology Laboratory
 - Isaac "Andy" Aurelio, José Figueroa
- TCM
 - Jorunn Brigtsen, Bjorn-Erik Haugan
- Trimeric
 - Ray McKaskle
- Dresser Rand
 - Silvano Saretto
- WorleyParsons/Advisian
 - Vlad Vaysman

Thank you for your attention!