A Process with Decoupled Absorber Kinetics and Solvent Regeneration through Membrane Dewatering and In-Column Heat Transfer (DE-FE0031604)

Kunlei Liu, Brad Irvin, Reynolds Frimpong, Feng Zhu, Lisa Richburg and James Landon University of Kentucky, Center for Applied Energy Research

> U.S. Department of Energy National Energy Technology Laboratory **Carbon Capture 2020 Integrated Review Webinar** October-5-7 2020

Project Objectives

Developing transformative post-combustion CO₂ capture through:

- 1. Enhanced mass transfer via applying 3-D printed two-channel structured packing material to control the absorber temperature profile
- 2. Lower the regeneration energy via
 - Implementing a zeolite membrane dewatering unit capable of >15% dewatering of the carbon-rich solvent prior to the stripper
 - Use of rich split-feed with two-phase flow heat exchanger prior to the stripper providing a secondary point of vapor generation

Project Team and Funding

Background – Absorber Profile

A "temperature bulge" is present near the middle of the column.

Higher temperature will impede additional absorption of CO_2 .

Absorber ID and height will be reduced if the internal temperature is managed.

Background – Advanced Stripping and Secondary Vapor Generation

Temperature (left) and flow (right) conditions inside a stripping column. Towards the top of the column, the temperature will rise and significant energy will be expended to vaporize water (lower CO_2/H_2O ratio).

Project Approach

- Use of 3D printing to implement heat transfer channels into the packing material, providing cooling (>150 W on the UK CAER small bench unit) without need for both packing and intercooling sections.
- Achieving >100 m²/m³ of membranes for a dewatering module, lowering the footprint/volume of the dewatering process while demonstrating fluxes of >10 kg/m²/h to decrease membrane area/cost.
- 3. Use of a secondary entry point between two packing sections in the stripper with a high-end heat exchanger (using the lean amine stream).

Project Task Schedule and Success Criteria

Task		Title Year 1 Year 2 Year 3						
1	Project Mana	gement and Planning						
2	3-D Printed P	acking Material for Absorber						
	Zeolite Dewa	tering Module Development and						
3	Fabrication							
4	30 L/min CO2	2 Capture Bench Unit Evaluation						
5	Test Plan Dev	velopment						
	Evaluation of	Proposed Technique at 0.1 MWth						
6	Post Combus	tion CO2 Capture Facility						
	High Packing	Density and Performance Zeolite Y						
7	Membranes							
	Composite Ze	colite and Alternative Dewatering						
8	Membrane							
9	Techno-Econo	omic Analysis						
10	Topical Repo	rt Preparation and Submission						
Decision Point Success Criteria								
Budget Period 1 1. Peak Absorber Tempera			ature Reduced by >	10 °C Confirmed				
2. Zeolite Y Membranes w		vith Fluxes >10 kg/r	m ² /h at Rejection R	ates >90%				
		3. Dewatering Zeolite Y Module Design Complete with >200 m ² /m ³						
		4. Test Plan Complete for	0.1 MWth Capture	Unit				
Budget I	Period 2	1. Stripper Heat Int. >10%	Energy Savings on	0.1 MWth Capture	e Unit			
_		2. Long-Term Energy Savi	ings of >15% from 1000-hour Process Study					
		3 Dewatering Membrane	Dacking Density In	crease to $>100 \text{ m}^2$	/m ³			
5. Dewatering Membrane Packing Density increase to 2400 m /m								
	4. Aspen Wodel for Entire Integrated System							
		5. TEA Complete for Integ	grated Process					
6. EH&S Assessment Com			plete for Integrated	d Process				
7 Undated State		7. Updated State Point Da	Data Table for Membrane 7					
8 Tachnology Can Analys			is Complete					

UK CAER CO₂ Capture and Utilization Facilities

Progress and Current Status: Large Bench (Split Feed to Stripper)

Preliminary model developed with 50% split ratio to estimate temperatures around heat exchangers and stripper

Split ratios varied from 20-50% experimentally to assess optimal performance

Progress and Current Status: Large Bench (Split Feed to Stripper)

Split feed to stripper reduced exhaust stripper temperature by ~10 °C With 20% split flow, energy of regeneration reduced by ~15%

10

Progress and Current Status: Large Bench (Heat Transfer Packing)

Heat trait to tailo absorbe

Heat transfer packing installed in large bench unit and used to to tailor the bulge temperature and temperature profile in the absorber.

Progress and Current Status: Heat Transfer Packing – Pump Around

Pump around impacts bottom temperatures and profile at lower section of packing

Progress and Current Status: Zeolite Membrane

Effect of substrate materials

The Dewatering Test: 30 wt.% MEA									
Substrate materials	Dimension O.D./I.D. (mm)	Porosity	Pore size/µm	Total flux kg/m²/h	Rejection rate				
FerroCeramic Mullite	12.2 x 8.0	25-35%	1.5-2.0	0.71	30.1%				
Nikkato Mullite	11.7 x 8.9	44%	1.8	0.79	85.3%				
MPT-0.5-S	5.7 x 2.9	21-23%	0.5	1.83	77.6%				
MPT-0.5-L	11.8 x 8.5	21-23%	0.5	1.05	49.8%				
MPT-0.05-S	5.7 x 2.9	25-35%	0.05	8.36	69.2%				
NJTECH AC100	12.4 x 7.3	30-40%	0.1	10.12	88.3%				

Effect of structure directing agents

The Dewatering Test: 30 wt.% MEA							
Structure directing agents	Total flux kg/m²/h	Rejection rate					
Hexadecyltrimethylammonium bromide (CTAB)	12.95	27.6%					
Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (TPOAC)	10.67	15.2%					
Lithium carbonate (Li ₂ CO ₃)	13.44	24.3%					

Progress and Current Status: Zeolite Membrane

Fabrication of Zeolite Y Membrane Module by Media & Process Technology

Methanol was used as alternative seed solution solvent for conventional seeding method. Dewatering performance of 31-inch long membranes showed 4.4-5.4 kg/m²/h flux and >96% rejection rate in CO₂ loaded 30 wt% MEA.

(a) 4-inch	11-inch	
	15-inch	31-inch
213 21 2 13 14 15 16 17 18 113 214 12 19 19 19 19 19 19 19 19 19 19 19 19 19	- 19 10 11 12 13 14 15 16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31
(b)	Progress of memb	orane scale
	up from 4-inch to	31-inch
	11-inch	
Å	15-inch	
		31-inch
	1	
1 2 3 4 5 6 7 8 100500 210 910 910 910 100		215 26 27 28 29 30 11 32 25 72 28 29 30 31 32 250 39 30 31 32 30 31 32 30 31 31 32 30 31 31 31 31 31 31 31 31 31 31 31 31 31

	The Dewatering Test: 30 wt.% MEA, 10 mL/min					
Membrane	Temperat ure	Pressure	Total Flux	Rejection		
ID ID	(°C)	(psi)	(kg/m²/h)	Rate		
NaY-31in-B1	125	78	5.0	95.7%		
NaY-31in-B2	127	79	5.1	96.2%		
NaY-31in-B3	124	81	5.0	97.2%		
NaY-31in-B4	128	74	4.4	95.3%		
NaY-31in-B5	123	81	5.4	96.1%		

Progress and Current Status: Zeolite Membrane

6" Bundle in Steel Module		
Length of Bundle	38	inches
Bundle Diameter	6.125	inches
Tube Outer Diameter	5.7	mm
Approximate Tubes	550	each
Surface Area	9.51	m2
Bundle Volume	0.01835	m3
Housing Volume (OD)	0.02163	m3
Packing Density	439.5	m2/m3

Design of dewatering membrane module can achieve packing density of $\sim 440 \text{ m}^2/\text{m}^3$.

The first 19-membrane module with total membrane area of 0.13 m^2 installed in UK CAER's large bench unit.

Future testing: Dewatering Membrane Integration

Conditions under evaluation for the zeolite dewatering module (**Table 1**), and the split-feed to the stripper (**Table 2**) for the 0.1 MWth large bench unit.

Table 1. Zeolite Dewatering Evaluation Data.									
	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Test 7		
Solvent Inlet Temperature	90 °C	95 °C	100 °C	100 °C	105 °C	110 °C	120 °C		
Feed Pressure	100 psi	100 psi	100 psi	150 psi	100 psi	100 psi	150 psi		

Table 2. Spilt-Feed Two-Phase Flow to Stripper Evaluation Data.							
	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Test 7
Zeolite Module	00 °C	00 °C	100 °C	100 °C	110 °C	110 °C	110 °C
Temperature	90 C	90°C	100 °C	100 °C	110 C	110 C	110 C
Fraction Flow Through							
High-End Heat							
Exchanger, Two-Phase	0.6	0.8	0.6	0.8	0.6	0.7	0.8
Flow to the Middle							
Packing of Stripper							

Summary

- Split stream cooled stripper exhaust stream by ~10 °C, less water evaporation resulted in energy savings of ~15%
- Heat transfer packing used to tailor bulge temperature and temperature profile in absorber to enhance solvent performance
- Integration of dewatering membrane would increase solvent rich loading to stripper to further enhance observed energy savings with split streams

Acknowledgements

U.S. DOE NETL: David Lang, José Figueroa, Lynn Brickett and Dan Hancu
LLNL: Du Thai Nguyen
MPT: Rich Ciora and Amy Chen
UK CAER: Power Gen group

Appendix: Future Testing

Additional HTPM Testing

This is what we had expected to see as the ASPEN model predicted this outcome.