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Project Objectives

Developing transformative post-combustion CO2

capture through:

1. Enhanced mass transfer via applying 3-D printed 

two-channel structured packing material to control 

the absorber temperature profile

2. Lower the regeneration energy via 
• Implementing a zeolite membrane dewatering unit 

capable of >15% dewatering of the carbon-rich 

solvent prior to the stripper

• Use of rich split-feed with two-phase flow heat 

exchanger prior to the stripper providing a 

secondary point of vapor generation 2
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Project Team and Funding

Project Manager
DOE/NETL
David Lang

Trimeric
Techno-Economic 

Analysis

Smith 
Management 
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Environmental 
Health & Safety

Lawrence 
Livermore National 
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Packing Material
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Fabrication

DOE-NETL Cost Share 

Total: $2,986,182 $748,068 $3,734,250 

Percent 

Share:
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Trimeric

Project Dates BP1 BP2

Start: 5/1/2018 11/1/2019
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Project Management
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Zeolite Development
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Background – Absorber Profile

A “temperature bulge” is present near 

the middle of the column. 

Higher temperature will impede 

additional absorption of CO2.

Absorber ID and height will 

be reduced if the internal 

temperature is managed.
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Background – Advanced Stripping and 

Secondary Vapor Generation

Temperature (left) and flow (right) conditions inside a 

stripping column. Towards the top of the column, the 

temperature will rise and significant energy will be expended 

to vaporize water (lower CO2/H2O ratio).
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Project Approach

1. Use of 3D printing to implement heat transfer 

channels into the packing material, providing 

cooling (>150 W on the UK CAER small bench 

unit) without need for both packing and 

intercooling sections.

2. Achieving >100 m2/m3 of membranes for a 

dewatering module, lowering the 

footprint/volume of the dewatering process while 

demonstrating fluxes of >10 kg/m2/h to 

decrease membrane area/cost.

3. Use of a secondary entry point between two 

packing sections in the stripper with a high-end 

heat exchanger (using the lean amine stream).
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Project Task Schedule and Success Criteria

Decision Point Success Criteria
Budget Period 1 1. Peak Absorber Temperature Reduced by >10 °C Confirmed

2. Zeolite Y Membranes with Fluxes >10 kg/m2/h at Rejection Rates >90%
3. Dewatering Zeolite Y Module Design Complete with >200 m2/m3

4. Test Plan Complete for 0.1 MWth Capture Unit
Budget Period 2 1. Stripper Heat Int. >10% Energy Savings on 0.1 MWth Capture Unit

2. Long-Term Energy Savings of >15% from 1000-hour Process Study
3. Dewatering Membrane Packing Density Increase to >400 m2/m3

4. Aspen Model for Entire Integrated System
5. TEA Complete for Integrated Process
6. EH&S Assessment Complete for Integrated Process
7. Updated State Point Data Table for Membrane
8. Technology Gap Analysis Complete



UK CAER CO2 Capture and 

Utilization Facilities
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Progress and Current Status: 

Large Bench (Split Feed to Stripper)

Big Hx Small 

Hx

Hot Lean: 119°C

Cold Rich: 40°C

Warm Rich: 92°C

50% flow reduction

Warm Lean: 

108°C

Hot Rich: 114°C

Cold Lean: 51°C

Preliminary model developed with 50% split ratio to estimate temperatures around heat

exchangers and stripper

Split ratios varied from 20-50% experimentally to assess optimal performance
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Progress and Current Status: 

Large Bench (Split Feed to Stripper)

Split feed to stripper reduced exhaust stripper temperature by ~10 °C

With 20% split flow, energy of regeneration reduced by ~15%
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Progress and Current Status: 

Large Bench (Heat Transfer Packing)
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Heat transfer packing installed in large bench unit and used to

to tailor the bulge temperature and temperature profile in the

absorber.
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Progress and Current Status: 

Heat Transfer Packing – Pump Around
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Pump around impacts bottom temperatures and profile at

lower section of packing
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Progress and Current Status: 

Zeolite Membrane
The Dewatering Test: 30 wt.% MEA

Substrate materials

Dimension

O.D./I.D. 

(mm)

Porosity
Pore 

size/μm

Total flux 

kg/m2/h

Rejection 

rate

FerroCeramic Mullite 12.2 x 8.0 25-35% 1.5-2.0 0.71 30.1%

Nikkato Mullite 11.7 x 8.9 44% 1.8 0.79 85.3%

MPT-0.5-S 5.7 x 2.9 21-23% 0.5 1.83 77.6%

MPT-0.5-L 11.8 x 8.5 21-23% 0.5 1.05 49.8%

MPT-0.05-S 5.7 x 2.9 25-35% 0.05 8.36 69.2%

NJTECH AC100 12.4 x 7.3 30-40% 0.1 10.12 88.3%

Effect of substrate materials

Effect of structure directing agents

The Dewatering Test: 30 wt.% MEA

Structure directing agents
Total flux 

kg/m2/h

Rejection 

rate

Hexadecyltrimethylammonium bromide (CTAB) 12.95 27.6%

Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium 

chloride (TPOAC)
10.67 15.2%

Lithium carbonate (Li2CO3) 13.44 24.3%
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Fabrication of Zeolite Y Membrane Module by Media & Process Technology

Progress of membrane scale 

up from 4-inch to 31-inch

Membrane

ID

The Dewatering Test: 30 wt.% MEA, 10 mL/min

Temperat

ure

(°C)

Pressure

(psi)

Total Flux

(kg/m2/h)

Rejection

Rate

NaY-31in-B1 125 78 5.0 95.7%

NaY-31in-B2 127 79 5.1 96.2%

NaY-31in-B3 124 81 5.0 97.2%

NaY-31in-B4 128 74 4.4 95.3%

NaY-31in-B5 123 81 5.4 96.1%

Methanol was used as alternative seed solution

solvent for conventional seeding method.

Dewatering performance of 31-inch long

membranes showed 4.4-5.4 kg/m2/h flux and

>96% rejection rate in CO2 loaded 30 wt% MEA.

Progress and Current Status: Zeolite 

Membrane
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6" Bundle in Steel Module

Length of Bundle 38 inches

Bundle Diameter 6.125 inches

Tube Outer Diameter 5.7 mm

Approximate Tubes 550 each

Surface Area 9.51 m2 

Bundle Volume 0.01835 m3

Housing Volume (OD) 0.02163 m3

Packing Density 439.5 m2/m3

Design of dewatering membrane

module can achieve packing

density of ~440 m2/m3.

The first 19-membrane module with

total membrane area of 0.13 m2 installed

in UK CAER’s large bench unit.

Progress and Current Status: 

Zeolite Membrane
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Future testing: 

Dewatering Membrane Integration

Table 1. Zeolite Dewatering Evaluation Data.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Solvent Inlet 

Temperature
90 °C 95 °C 100 °C 100 °C 105 °C 110 °C 120 °C

Feed Pressure 100 psi 100 psi 100 psi 150 psi 100 psi 100 psi 150 psi

Table 2. Spilt-Feed Two-Phase Flow to Stripper Evaluation Data.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Zeolite Module 

Temperature
90 °C 90 °C 100 °C 100 °C 110 °C 110 °C 110 °C

Fraction Flow Through 

High-End Heat 

Exchanger, Two-Phase 

Flow to the Middle 

Packing of Stripper

0.6 0.8 0.6 0.8 0.6 0.7 0.8

Conditions under evaluation for the zeolite dewatering module (Table 1), and the split-feed 

to the stripper (Table 2) for the 0.1 MWth large bench unit.



Summary

• Split stream cooled stripper exhaust stream by ~10 °C, 

less water evaporation resulted in energy savings of 

~15%

• Heat transfer packing used to tailor bulge temperature 

and temperature profile in absorber to enhance solvent 

performance

• Integration of dewatering membrane would increase 

solvent rich loading to stripper to further enhance 

observed energy savings with split streams
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Appendix: Future Testing
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This is what we had expected to see as the ASPEN 

model predicted this outcome. 


