
BETO Advanced Algal Systems Program & DAC investments for FE Peer Review

10/7/2020

Devinn Lambert

Technology Manager, Advanced Algal Systems, Bioenergy Technologies Office Co-Chair Algae Interagency Working Group Operations Committee Liaison, Biomass R&D Board

U.S. Department of Energy Transportation Offices

Bioenergy Technologies Office's Critical Program Areas

Feedstock & Logistics

Production & Harvesting

- Reduce cost
- Improve biomass quality
- Increase the volume of sustainable feedstocks for conversion

Advanced Algal Systems

- Lower costs of production
- Improve productivity
- Improve quality

Conversion & Refining

Conversion

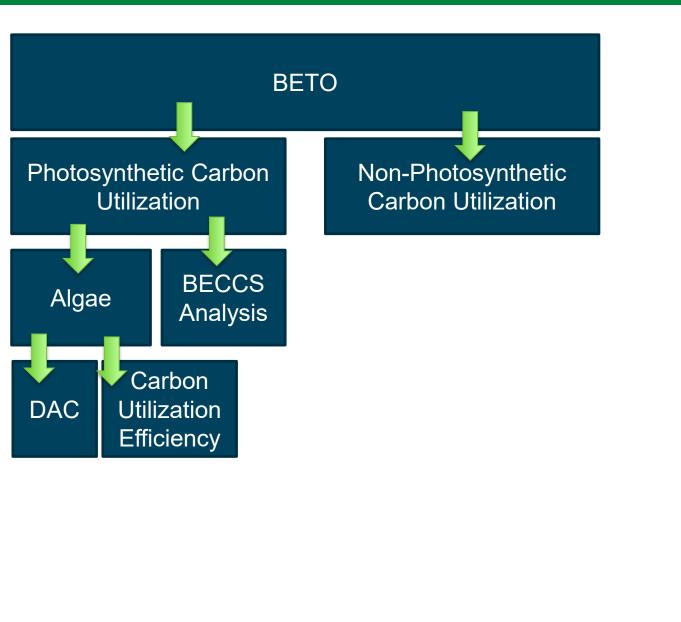
- Develops technologies to convert non-food feedstocks into biofuels, bioproducts, and biopower
- Achieve top research impacts by conducting:
 - Feedstock blend testing
 - Separation and materials compatibility evaluations
 - Techno-economic analysis

Distribution & End Use

Systems Development &

Integration

- Reduce technology uncertainty in bioenergy by:
 - Integrating technologies into a system/process
 - Provide vital knowledge fed back to research programs


Crosscutting

Sustainability and Strategic Analysis

- Supports program decision-making
- Develops strategies to understand and enhance the economic
- and environmental benefits of advanced bioenergy

BETO's carbon utilization efforts

Innovative R&D keeps algae as a forefront technology for the bioeconomy and circular carbon economy.

BETO has a \$30-40 million annual R&D program in Advanced Algal Systems. CO₂ Drive CO₂ into solution via chemical, biological, or engineering methods

BETO has invested approximately \$40 million in R&D directly targeted on photosynthetic carbon utilization of which \$23M is on DAC with algae. Sunlight, nutrients, and culture management yields bountiful algae harvest

Societal challenges which algae can help solve

Today

Better manage carbon, nitrogen, and other resources.

n, Fly

Fly a total of 6.9 billion passengers. 3.1 billion more than today.

15 years

30 years

Feed a world population that is estimated to reach more than 9 billion people.

Algae coupled with DAC can capture 1 gigaton of CO_2 a year using marginal lands equivalent to 15% the area of corn.

Algae can produce 16% of U.S. jet fuel needs using marginal lands equivalent to 3% of the area of corn.

Algae grown on marginal lands equivalent to 2% of the area of soy can yield 17 million more tons of protein.

Summary of modeling that informs our program's strategy

Scenedesmus cultivation at Arizona Center for Algae Technology and Innovation where DOE SOT work is performed. Modeling annual future productivities of 30 tons/acre/year

Over 7 million acres of land with suitable CO₂ access that satisfy land and water sustainability criteria. 30-40% achieves 5 billion gallon goal.

> 100-270M M tons per year biomass; Over 5 billion gallons of fuel

> > Biomass cost averages

\$472/ton (freshwater) to \$655/ton (saline)

National fuel targets can be delivered at <\$2.50/gge when co-produced with high-value commodities like polyurethanes

Pathways achieve 50% GHG reduction

Energy Efficiency & Renewable Energy

Summary of modeling that informs our program's strategy

2019 state of technology: 16g/m²/day (21 tons/acre/year)

Summer productivity: 27 g/m2/day

87% improvement in annual average productivity relative to FY15

Biomass cost averages \$670/ton (freshwater) to \$866/ton (saline) \$200/ton greater than 2030 target

"Advancing the State of Technology thru DOE funded algae cultivation R&D at the Arizona Center for Algae Technology and Innovation" Presentation by Dr. John McGowen on September 19, 2019, at the Algae Biomass Summit;

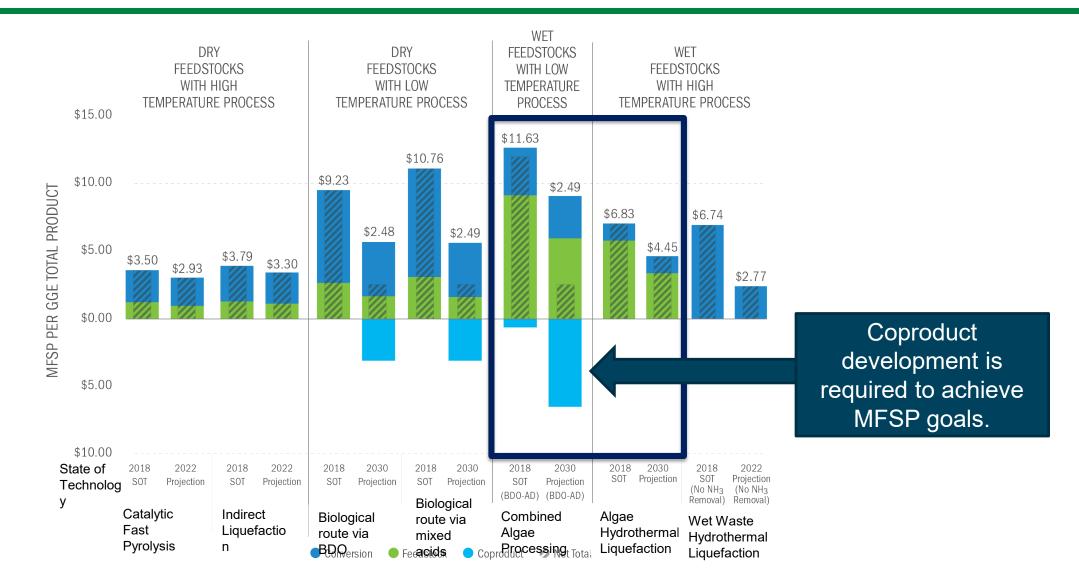
https://discovr.labworks.org/sites/default/files/McGowen%20DISCOVR%20SOT%20Algae%20Biomass %20Summit%20Presentation%209-19-19.pdf Modeling annual future productivities of 30 tons/acre/year

Over 7 million acres of land with suitable CO₂ access that satisfy land and water sustainability criteria. 30-40% achieves 5 billion gallon goal.

> 100-270M M tons per year biomass; Over 5 billion gallons of fuel

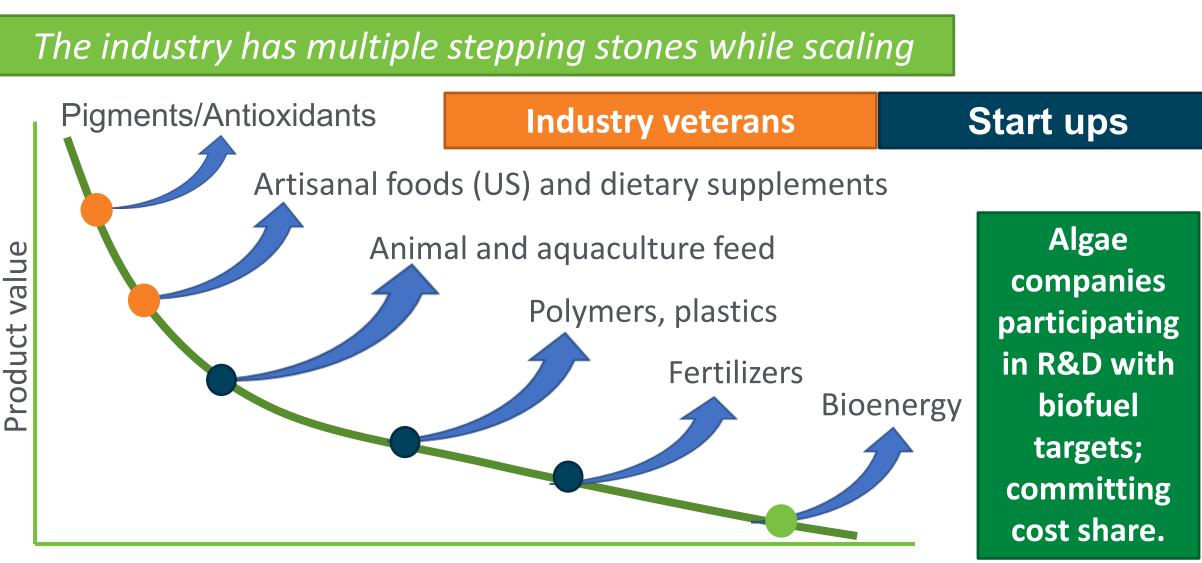
> > Biomass cost averages

\$472/ton (freshwater) to \$655/ton (saline)


National fuel targets can be delivered at <\$2.50/gge when co-produced with high-value commodities like polyurethanes

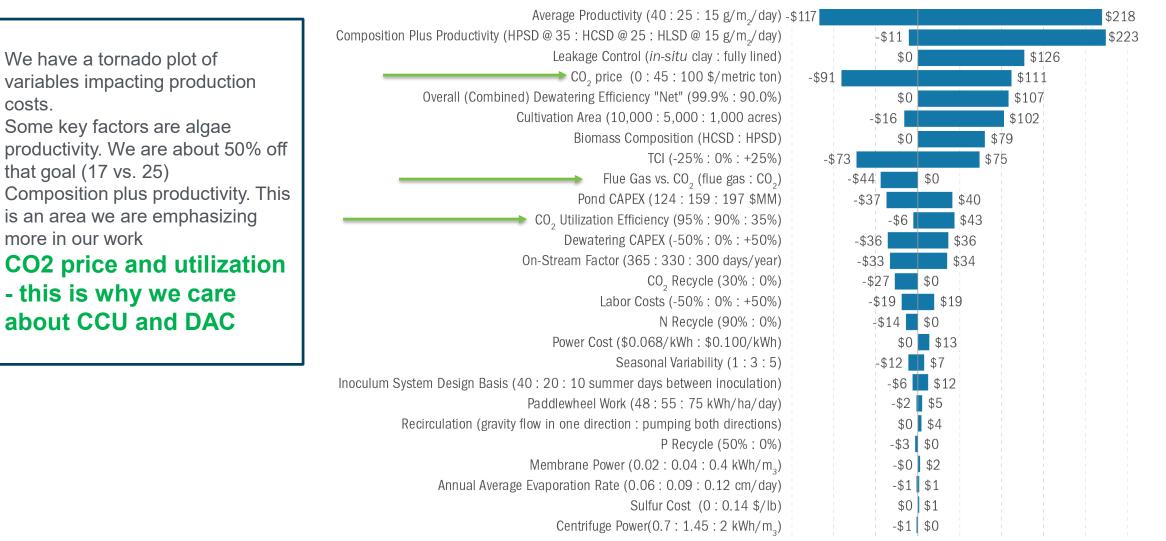
Pathways achieve 50% GHG reduction

Energy Efficiency & Renewable Energy


State of Technology Reports: Producing Low Cost, Low GHG Biomass Derived Fuels

Energy Efficiency & Renewable Energy

Algae's characteristics make it a versatile feedstock for multiple product markets



Volume of product (scale of cultivation)

Energy Efficiency & Renewable Energy

Carbon Capture and Utilization – Why We Care About This in Our Portfolio

-\$150 -\$100 -\$50 \$0.00 \$50 \$100 \$150 \$200 \$250

Change to MBSP from 2030 Baseline (\$/ton AFDW) U.S. DEPARTMENT OF ENERGY Renewable Energy

2.

3.

4.

Advanced Algal Systems investment in CCU and partnership with FE

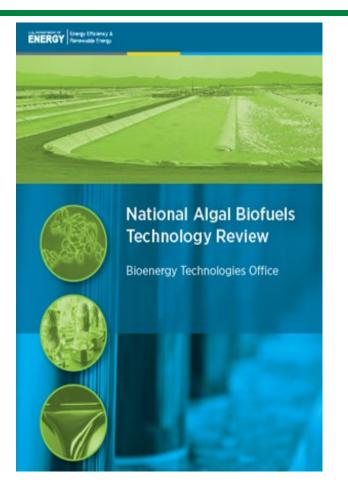
The algae industry is an early DAC and flue gas capture adopter

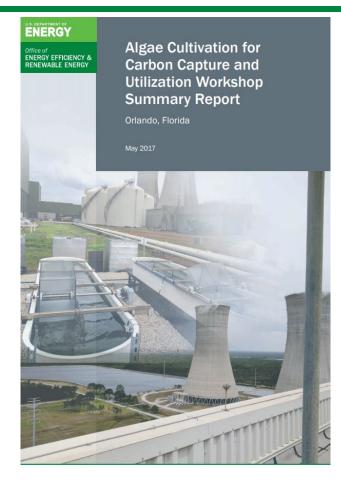
BETO has partnered with FE on carbon utilization algae projects to investigate both flue gas capture and direct air capture (DAC) to reduce delivered CO_2 costs and provide added value.

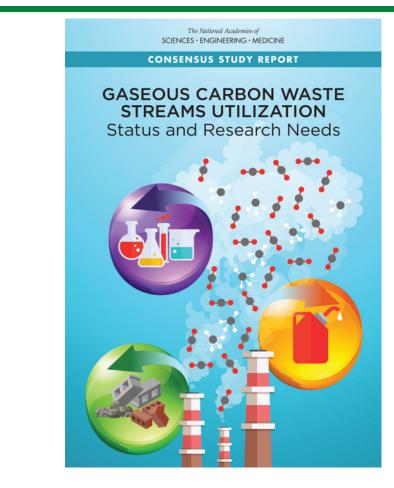
Renewable Energy

Congressional Language

	House	Senate	Conference
FY21	The recommendation provides \$40,000,000 for advanced algal systems.		Short Term CR (Dec 11). Previous year guidance holds.
FY20	The recommendation provides \$35,000,000 for advanced algal systems.	The Committee encourages further research and development activities to support carbon dioxide capture from the atmosphere [ambient air] into highly alkaline solutions using algae-to-energy technologies. Therefore, within funds available, the Committee recommends \$10,000,000 for technology and research and development on direct air carbon capture and removal.	Within available funds, not less than \$40,000,000 is provided for Advanced Algal Systems. (Unless contradicted, House and Senate Report language stands)


Congressional Language


	House	Senate	Conference
FY19	The recommendation provides \$32,000,000 for algal biofuels, of which \$2,000,000 is for further research and development activities to support carbon capture from the atmosphere (ambient air) using algae- to-energy technologies.	Within available funds, the Committee recommends not less than \$30,000,000 for Advanced Algal Systems to sustain the investment in development of algal biofuels.	\$32,000,000 for algal biofuels, of which \$2,000,000 is for further research and development activities to support carbon capture from the atmosphere (ambient air) using algae-to- energy technologies.
FY18		The Committee encourages	


FE to collaborate with BETO within EERE to support projects that utilize carbon dioxide in the production of algae and other potentially marketable products. (p84)

\$30,000,000 for algal biofuels.

Support for AAS Carbon Capture and Utilization R&D

Engineering and **biological** solutions are needed to increase the efficiencies of **CO**₂ **delivery** and **uptake** by the algae, and it is important to show that algae can **thrive** on these emissions while **reducing costs** of production.

Energy Efficiency & Renewable Energy

Enabling technology for algae utilization of CO₂ from DAC

2018 BETO FOA	Engineering	Chemically	Biologically
Technology development approaches for enabling DAC used by FOA awardees	Direct Air Capture of CO2 and Delivery to Photobioreactors for Algal Biofuel Production, \$2M	Air Carbon for Algae Production – AirCAP, \$2.2M	Enhanced Algal Production of CA for Improved Atmospheric Delivery of CO ₂ to Ponds, \$2M
CO ₂ concentration in air is about 405ppm. Oxygen in air is about 500 times higher than CO ₂	Team: Georgia Tech, Global Thermostat, Algenol Biotech, NREL	Team: MicroBio Engineering Inc , PNNL, Qualitas Health, Global Thermostat	Team: J. Craig Venter Institute, Global Algae Innovations, Cal Poly San Luis Obispo
CO ₂ Drive CO ₂ into solution via chemical, biological, or engineering	Use DAC machine with amine-based sorbents to capture CO ₂ and deliver to algae cultivation systems	Use pH of the algae cultivation system to convert CO ₂ into a more soluble species	Use a biologically produced enzyme to catalyze CO ₂ into a more soluble species
sunlight, nutrients, and culture management yields bountiful algae harvest	This project will reduce algal biofuel costs and carbon intensity by using 20% or more of CO_2 from DAC and lower the cost CO_2 collection from air by developing DAC technology that utilizes improved sorbents and less intense operating conditions.	Direct mass-transfer of air- CO ₂ into algal ponds is limited by diffusion of CO ₂ at the air- water interface and the subsequent slow hydration of dissolved CO ₂ into carbonic acid. This project will focus on accelerating transfer from air CO ₂ into ponds at high pH, as well as biological and physical methods.	This project will utilize carbonic anhydrase (CA) to catalyze hydration of dissolved CO ₂ to bicarbonate, thereby enhancing delivery of atmospheric CO ₂ to the growth medium. Commercial CA use is cost-prohibitive at scale, therefore algal-derived extracellular CA production will be evaluated through the generation of transgenic lines.

Enabling technology for algae utilization of CO₂ from DAC

Algae Bioproducts and CO2 Direct-Air-Capture Efficiency FOA Topic Selections				
Production of Algae Biofuel and Bioproducts with CO2 Direct Air Capture	Global Algae Innovations			
Transforming High pH/High Alkalinity Cultivation through Beneficial Microbiomes and Improved Pond Design	Montana State University			
ASU's Polymer-enhanced Cyanobacterial Bioproductivity (AUDACity)	Arizona State University			
Biomolecular Films for Direct Air Capture of CO2	<u>University of California -</u>			
	San Diego			
Microalgae Commodities Production with a Direct Air Capture Process	MicroBio Engineering, Inc.			
Alkaline Carbon Capture and Expression-Streamlined Spirulina Cultivated in Air for Reliable Bioproducts, Oil, and Nutrition	Lumen Bioscience, Incorporated			
Development of High Value Bioproducts and Enhancement of Direct-Air-Capture Efficiency with a Marine Algae Biofuel Production System	Duke University			

Thank you, questions?

Useful reports

Federal Activities Report on the Bioeconomy: Algae

2019 BIOENERGY TECHNOLOGIES OFFICE 2019 R&D State of Technology

2017 Algae Harmonization Study: Evaluating the Potential for Future Algal Biofuel Costs, Sustainability, and Resource Assessment from Harmonized Modeling

2016 National Algae Technology Review

Devinn Lambert Bioenergy Technologies Office U.S. Department of Energy Washington, D.C.

Email: <u>devinn.lambert@ee.doe.gov</u> www.linkedin.com/in/devinnlambert @devinnl