Syngas Purifications Using High-Pressure CO₂BOL Derivatives with Pressure Swing Regeneration

Project Number FWP-72564 [NETL/DOE Project Manager: Sai Gollakota]

Phillip K. Koech Pacific Northwest National Laboratory

U.S. Department of Energy National Energy Technology Laboratory **Carbon Capture 2020 Integrated Review Webinar** October-5-7 2020

Acknowledgment

"This material is based upon work supported by the U.S. Department of Energy under Field Work Proposal FWP-72564."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Project Objectives

Total Project Funding: \$520,000 / 24 months.

Overall Project Performance Dates: 10/01/2018-10/01/2020 **Project Participants:**

Project Objectives

- Collect critical experimental data and complete a techno-economic assessment for >90% CO₂ removal with an energy penalty for the CO₂ capture of <0.7 GJ/tonne for pre-combustion capture with CO₂BOL HP solvents
- Optimize PNNL's Diamine (DA): Pressure Swing Absorption (PSA-1) solvent formulation to obtain the best CO_2 uptake capacity, low viscosity, excellent CO_2 , and H_2 selectivities while removing >98% CO₂ with an energy penalty for the CO₂ capture of <0.7 GJ/tonne
- Make progress towards meeting DOE's overall performance goals of CO_2 capture with 95% CO₂ purity at a cost of electricity (COE) 30% less than baseline capture approaches 3

Technical Approach

Multidisciplinary team provides: Solvent property testing for CO₂ selectivity, uptake capacities, vapor liquid equilibria (VLE), kinetics, and techno-economic analysis.

Solvent Screening

Operando high pressure nuclear magnetic resonance (NMR), and highpressure autoclave reactors for preliminary solvent screening.

Comprehensive property testing

High pressure- Pressure Volume and Temperature (HP-PVT), for measurement of VLE, kinetics and viscosities.

Techno-economic Assessment

Process performance projections using Aspen Plus models and industrial data

Operando NMR Spectroscopy

Pacific Northwest

Project Scope

Year 2, FY20

- Optimize DA: PSA-1 solvent formulation and measure viscosities at high pressure
- Design, construct and shakedown High Pressure-Pressure Volume and Temperature (HP-PVT) cell and validate its operation with the aMDEA solvent
- Perform comprehensive property testing (VLE, viscosity, density, and mass transfer coefficients) of the best solvent or blend using the HP-PVT cell
- Perform final TEA and process performance projections
- Develop a technology commercialization plan

Milestone Status

Milestone Number	• Milestone Description							
1.1	Updated Project Management Plan	October 31, 2019 Complete						
2.1	Complete solvent down-section based on VLE and viscosity data collected using working CO_2 capacity, estimated pumping energy, and flash pressure as the selection criteria to enable achieving an energy penalty for CO_2 capture of < 0.7 GJ/tonne	February 28, 2019 Complete						
3.1	Perform preliminary techno-economic assessment with the key criteria of achieving >90% CO ₂ removal with an energy penalty for the CO ₂ capture of < 0.7 GJ/tonne for pre-combustion capture.	March 31, 2019 Complete						
4.1	HP-PVT cell assembled and validated against standard solvent such as aMDEA and Selexol.	February 28, 2020 Complete						
5.1	Comprehensive material testing of 2 candidate molecules (or blends) including: VLE, viscosity, density and mass transfer coefficients at expected operation conditions completed.	May 31, 2020 Delayed due to lab closure						
6.1	Final techno-economic assessment, process performance projections demonstrating >90% CO_2 removal with an energy penalty for the CO_2 capture of < 0.7 GJ/tonne for pre-combustion capture	August 31, 2020 Delayed						

High Pressure NMR Solvent Screening and Lessons Learned in FY19

- CO₂ uptake capacities for PSA solvents dropped significantly in mixed gases.
- Thermal swing absorption (TSA) solvents had a high CO₂ rich viscosity when loaded with CO₂ slowing mass transfer.
- Applying molecular design learnings from our post-combustion solvents, we developed a new PSA solvent with high CO₂ uptake and low viscosity.
- High pressure NMR measurements were limited by poor solvent mixing.

Custom Pressure Swing Absorption Solvent (PSA-1) Developed

Assessing CO₂ Uptake from solvent blend

Comparing capacity of pressure swing and thermal swing solvents DA:PSA-1 indicates that a blend may be the best option.

	25 bar, RT, Gravimetric (~23 °C)													
Gas mixer Mol%	D	A	50: DA:F	:50 PSA-1	65: DA:P	35 SA-1	80:20 DA:PSA-1							
	Wt% Mol%		Wt%	Mol%	Wt%	Mol%	Wt%	Mol%						
100% CO ₂	26.3	129.5	7.6	36.4	10.8	52.4	19.3	98.0						
50% H_2 and 50% CO_2	17.9	88.1	10.3	49.4	13.7	66.2	13.6	67.8						
100% H ₂			0.02		0.2		0.3							

PSA-1 CO₂ capacity 500psi at 25 °C **43.6** mol% via NMR

No significant loss in CO₂ capture with binary gas mixture of 50% H₂ and 50% CO₂
Negligible H₂ solubility observed

Viscosity vs Temperature for three DA:PSA-1 Solvent blends at 500 psi CO₂

Viscosity decreases with increasing PSA-1 component solvent.

Solvent Scale Up

- ▶ HP-PVT requires ~50 mL per run.
- ~1L of each component is required for comprehensive property testing.
- Completed synthesis of 1L each for DA and PSA-1 solvents

High Pressure PVT System

- Unique experimental capability for comprehensive and facile solvent property data collection on only 50 cc liquid sample.
- High pressure VLE data from PT_{xy} cell measurements: up to 1,000 psi at 10°C-120°C with GC/MS gas phase sampling.
- Simultaneous absorption rate and mass transfer evaluations along with VLE on solvent samples using an internal Wetted Wall Contactor (WWC).
- Simultaneous viscosity measurement on CO₂ loaded sample, expandable to other physical properties, e.g., density.

HP-PVT System Assembly – Complete

HP-PVT for measurement of vapor liquid equilibria (VLE), kinetics, and solvent viscosity under high pressure

- HP-PVT apparatus design, construction, and shakedown are complete.
- Instrument calibrations including PTxy cell volumes, gas sampling system, and liquid loop are complete.
- System validation with aqueous MDEA/PZ solvent is ongoing.

HP-PVT System Assembly – Complete

HP-PVT for measurement of vapor liquid equilibria (VLE), kinetics, and solvent viscosity under high pressure

HP-PVT Cell Shakedown & Calibration

Pressure Test – Tested to 1,000 psi system maximum allowable working pressure and obtained pressure safety approval.

Pressure Leak Test – Helium leak rate at system MWAP was ~10⁻³ std-cm³/s.

System Volume Calibration – Free volumes of the cell and the gas manifold calibrated using nitrogen gas: 1129 cm³ and 22.65 cm³, respectively.

PTxy Cell Injection Tests – Inert gas injections tested at 200-800 psi to fine tune injection dose as a function of valve pulse duration and pneumatic air pressure. Measured cumulative mass balance errors.

Solvent Circulation Loop – Film flow over WWC verified at working circulation flow rates and gas phase mixer speeds. Solvent sample loading and recovery methods were developed and tested. Gas Phase Sampling System – Pressure reduction and sample volume extraction performance were verified. GC sample conditioning and timing parameters were developed specific to cell operating conditions.

Preliminary Techno-Economic Assessment

Establishing a baseline case for comparing mixed solvents against success criteria.

Leveraging available experimental data from post-combustion program
Models developed for ASPEN Plus for EDEA and DA

- Modeled process configurations for
 - Reference aMDEA process
 - Process configuration for EDEA:DA blend
- Used available experimental data from this project
 - Extracted performance from published data on aMDEA
 - Used available experimental data for PSA-1:DA to calculate performance

Performance Comparison

Hybrid process utilizes a bulk PSA and a polishing TSA. Currently unoptimized; ratio of solvent blend can be changed.

	EDEA/DA	PZ/MDEA
Utility Consumptions		
Cooling water (GJ/hr)	83.07	213.1
Steam (GJ/hr)	56.52	203.0
Electricity (GJ/hr)	21.88	4.01
Overall Performance		
Reboiler duty (GJ/tonne CO ₂)	0.55	1.98
Pump duty (GJ/tonne CO ₂)	0.21	0.04
Total (GJ/tonne CO ₂)	0.76	2.02
Equivalent work (KJe/mol CO ₂)	15.1	19.1

*Target Energy for CO₂ Removal: 0.7 GJ/tonne CO₂

The preliminary mixed solvent process uses lower energy and total equivalent work as compared to aMDEA.

Process Modeling- Aspen PFD

Process Modeling- aMDEA Comparison

- A detailed process model for the aMDEA (as a base case) is being constructed in Aspen Plus.
- Model of the full absorber and stripper system, including lean/rich exchanger, lean pump, and lean cooler
- Utilizing ENRTL-RK thermodynamic model which allows for multiple ionic species
- Both absorber and stripper are modeled with RadFrac.
 - Rate-based calculation for detailed stage-by-stage heat and material calculations
 - Mixed flow model
- Reaction equilibrium and kinetic data were selected from available literature (regressed to model) with nearest operating conditions to DOE precombustion syngas conditions.
- Full column dimensions and internals are modeled to feed TEA.

Process Modeling- CO₂BOLs

- Initial equilibrium model of the absorber for one candidate CO₂BOL (DA) created by PNNL and shared with Susteon
- Model for aMDEA system will be utilized as a baseline for detailed rate-based modeling of DA.
 - Necessary changes will be made to the electrolyte method and reaction kinetics/equilibrium in the existing model to match PNNL data.
- Experimental data gathered by PNNL on other candidate CO₂BOLs will be incorporated into the model for evaluation against each other and for comparison (aMDEA).

Findings of the Experimental Work

- Viscosity of four CO₂ rich DA:PSA-1 blends were measured at 25, 35, and 45 °C and 500 psi CO₂, as expected viscosity decreased with increasing PSA-1 solvent
- Completed scale up synthesis of 1L each for DA and PSA-1 solvents for comprehensive property testing
- Completed design, construction, shakedown and calibration of HP-PVT equipment.
- HP-PVT system validation with aMDEA solvent is ongoing.

Future Testing

- Complete optimization of solvent formulation ratio of DA:PSA-1
- Complete Measurement of VLE, viscosity, and kinetics for 2 blends (DA:PSA-1 and Susteon's A/B) under syngas conditions
- Update ASPEN process model and complete TEA
- Optimize process design for drop-in solvent replacement

Appendix

These slides will not be discussed during the presentation but are mandatory.

Project Team

Gantt Chart

	FY19									FY20														
	o	N	D	J	F	м	A	м	ſ	J	А	s	o	N	D	ſ	F	м	А	м	J	ſ	A	s
Year 1 FY 2019				12			11																	
1. Project Management (BP1 & BP2)									\mathcal{X}															
2. VLE and viscosity measured to identify down-selected compounds																								
3. Preliminary techno-economic assessment and process performance assessment														-		-	-			-				
Year 2 FY 2020																	()							
4. Construct and shakedown hp-PVT cell with validation against known standards																								
5. Comprehensive property testing of solvents or blends using hp-PVT cell																								
6. Final techno-economic assessment, process performance projections and Technology commercialization																								

Back Up Slides

Technology Background

Preliminary Configuration for Drop-in Replacement of Existing aMDEA with the New Solvent (DA:PSA-1 50/50 Wt/Wt))

- Absorber: 35 bar, 38 °C
- Flash Column 1.7 bar
- Regeneration Column: 130 °C, 1.7 bar, enthalpy of regeneration ~ 71 kJ/mol
- Water loading: 1 wt %
- Viscosity: 10 cP
- CO₂ removal >99%
- CO₂ in treated gas <300 ppm</p>

Previous Work by PNNL on CO₂ & H₂S Showed Water-Lean Solvents are Viable for Natural Gas Separations

Leveraging prior work on water-lean solvents for high-pressure gas separations and applying that knowledge and solvent families for synthesis gas (syngas).

Anhydrous Ethyldiethanolamine (EDEA) absorbs H₂S more strongly than physical solvents but weaker than chemical solvents.

Mathias et al. Ind. Eng. Chem. Res., (2013), 52, 17562-17572

1.E+04 EDEA 1.E+03 aMDFA ---- Fluor Solv PP (kPa) 1.E+02 Selexol 1.E+01 ő 1.E+00 1.E-01 1.E-02 0.0001 0.001 0.01 0.1 Wt. Fraction CO₂

CO₂ Solubility in Various Solvents at 25°C

Anhydrous EDEA absorbs CO₂ stronger than physical solvents but weaker than chemical solvents.

VLE and Viscosity for DA:PSA-1 (1:1) for CO₂:H₂ (1:1) gas mixture at 35 bar

1:1 per mole DA:PSA-1 blend has a high CO₂ uptake with options for regeneration

- Normal trend of decreasing uptake capacity with temperature
- Both chemically and physically absorbed CO₂ on the solvent
- Viscosity decreases with temperature.
- It is comparable to aMDEA.

Drop-in Replacement of Existing aMDEA with the New Solvent – Preliminary Calculations

Mixture of DA and PSA-1 tested at PNNL.

HP-PVT Cell VLE Data Validation (aMDEA)

HP-PVT System Validation

VLE data collection and comparison with literature data on aqueous MDEA/PZ solvent formulations. PTxy data collection is ongoing.

Initial data indicate:

- Lower system baseline leak rate (<10⁻⁴ std-cm³/s or better),
- Better gas manifold temperature control (<0.1°C or better), and
- More robust high-pressure gas GC sampling method will be the most useful improvements if needed

PTxy Injection Profiles at 40°C MDEA/PZ/H₂O (45:5:50w/w)

Preliminary TEA Results Summary

- Significant reduction in the energy for CO₂ capture for CO₂-BOL solvents
 - Combination of physical and chemical absorption is extremely beneficial.
 - Increased use of physical adsorption enabled significant reduction in energy.
 - Maintaining some chemical absorption allows low CO₂ slip (~300 ppm).
 - Lower heat of absorption allows greater energy reduction.
- Assumptions:
 - New solvent absorption properties are the same as similar solvents from post-combustion or natural gas sweetening
 - Extrapolations from limited set of available experimental data on actual solvents
 - Assumption about the impact of water on the solvent performance