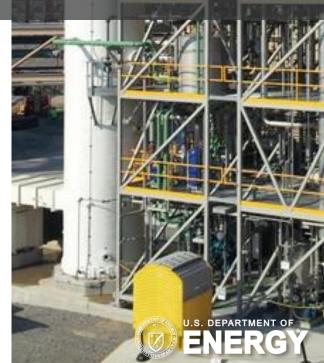


Carbon Capture Program Overview



Carbon Capture Annual Project Review October 5, 2020

Dan Hancu

Carbon Capture Technology Manager National Energy Technology Laboratory

Acknowledgements

NETL

- NETL Research: David Hopkinson
- CCSI²: Benjamin Omell/ Mike Matuszewski
- TEA Analyst: Timothy Fout
- Carbon Capture Team: José Figueroa, Andrew Jones, Andrew O'Palko, Naomi O'Neil, David Lang, Isaac Aurelio, Carl Laird, Katharina Daniels
- NETL Site Support: Lynn Manfredo

FE HQ

- Division Director: Mark Ackiewicz
- Program Manager: Lynn Brickett

Carbon Capture Program.. Mission

Mission

- Develop advanced cost-effect CO₂ capture technologies throughout the power-generation sector
- Ensure the U.S. will continue to have access to safe, reliable, & affordable energy from fossil fuels

Drivers/Challenges

- Coal-based & gas-based power are the 1st & 2nd largest stationary sources of CO₂ emissions
- Reduce CO₂ capital & operating costs
- Increase efficiency & reduce cost of CO₂ compression

Goal & Metrics

• By 2030, COE at least 30% lower than a supercritical PC with CO₂ capture

National Carbon Capture Center Photo Source: Southern Company Services

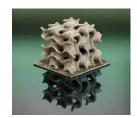
Carbon Capture Program.. Evolution

1st and 2nd Generation Technologies

2025: \$40/tonne CO₂

Petra Nova

2008


- ✓ Lower CAPEX/OPEX
- ✓ Reduced regeneration energy
- ✓ Increased working capacity

Transformational Technologies

2030: \$30/tonne CO2

Hollow Fibers

3D Print Biphasic Solvent

2015 -

- ✓ Water Lean Solvents
- ✓ Adv. Amines/Membranes
- √ Hybrid
- ✓ Process Intensification

Scale-up

TCM

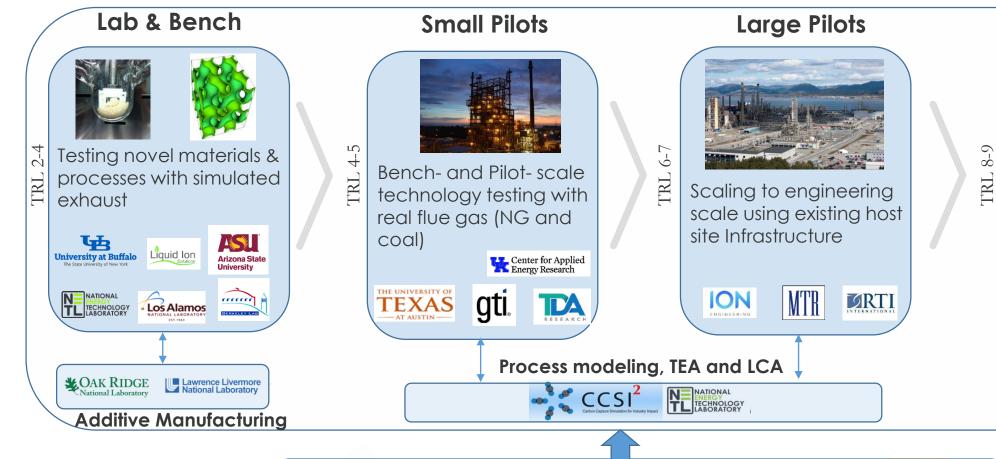
2018 -

- ✓ Engineering Scale testing
- √ FEED studies

Negative Emissions Technologies & Industrial

Carbon Engineering, DAC

Ethanol Plant


2020 -

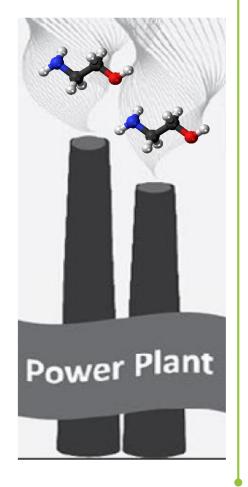
- ✓ Coal FIRST
- ✓ DAC & BECCS
- ✓ Industrial, NG

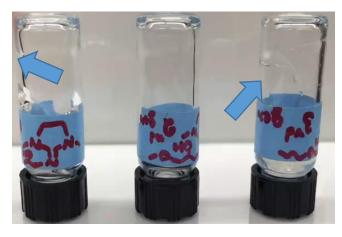
Carbon Capture.. Program Structure

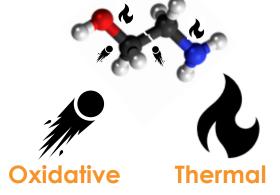
Sorbents

Post-combustion

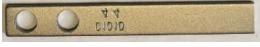
New and Retrofit Coal and NG Plants


Novel Concepts Pre-combustion


Carbon Capture.. Challenges

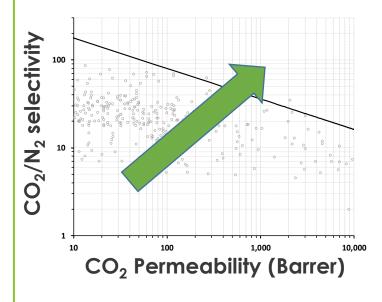

Aerosols

Viscosity

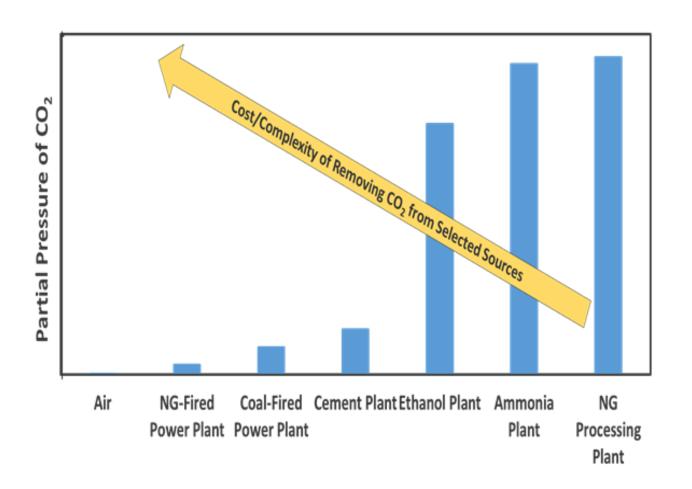

Degradation

Attrition

Corrosion



Disposal & Loss


Selectivity and Flux

Carbon Capture.. New Challenges

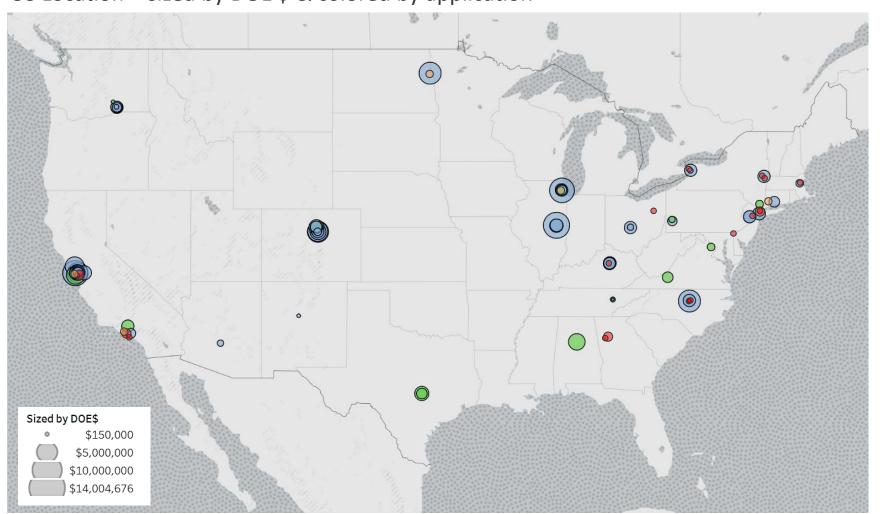
DAC.. Increased cost and complexity due to low CO₂

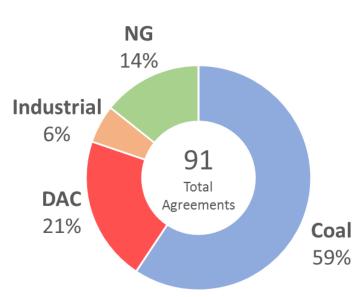
• NGCC.. Increased oxidative degradation due to higher $O_2\%$

• Industrial.. Heat integration & impurities

Coal FIRST.. Load following operation & low utilization factors

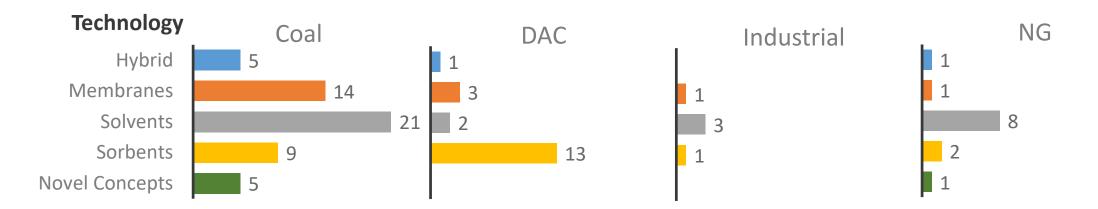
FOAs Issued in FY19 and FY20

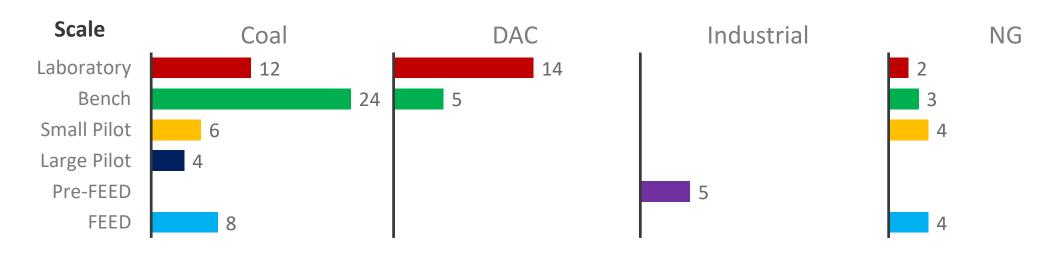

N	NATIONAL ENERGY
TL	TECHNOLOGY LABORATORY


FOA Title/Awards	Issue Date
Front-End Engineering Design Studies for Carbon Capture Systems on Coal and Natural Gas Power Plants • AOI 1: FEED studies for existing coal power plants (≥150 MWe) with CCS (TRL ≥6) • AOI 2: FEED studies for installing CCS (TRL ≥6) on new or existing domestic NGCC (375 Mwe) or new PC ≥150 MWe)	3/13/2019
 Novel Research and Development for the Direct Capture of Carbon Dioxide from the Atmosphere AOI 1: Lab-scale testing of <u>novel</u> materials (TRL 2) for direct air capture of CO₂ AOI 2: Field testing of <u>existing</u> materials/components (TRL4) in integrated DAC system in a relevant environment 	
 Carbon Capture R&D: Engineering Scale Testing From Coal and Natural Gas-Based Flue Gas and Initial Engineering Design for Industrial Sources AOI 1: Initial engineering design of technologies for CO₂ capture from industrial sources with CO₂ concentrations higher than coal-based flue gas AOI 2: Engineering-scale testing of transformational CO₂ capture technologies (TRL 4) on actual coal-derived flue gas and/or NGCC flue gas 	

Carbon Capture Program.. Project Distribution

US Location – sized by DOE \$ & colored by application





Carbon Capture Program.. Technology Area

Count by technology & scale

Pre-Commercial.. Coal/NG FEEDS (TRL 6+)

DE-FOA-0002058

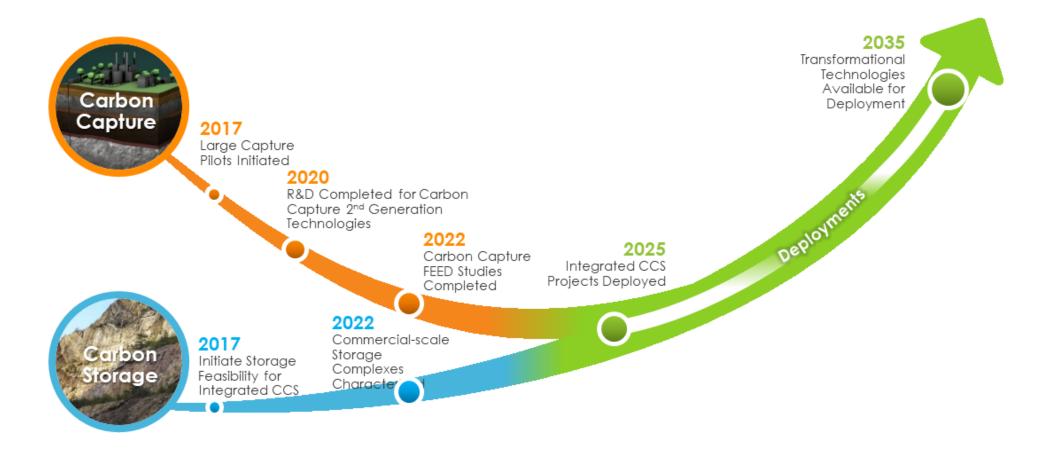
Closed 05/13/2019

9 awards/\$54M total DOE funding

AOI 1: Retrofitting Existing, Domestic Coal Power Plants with Carbon Capture

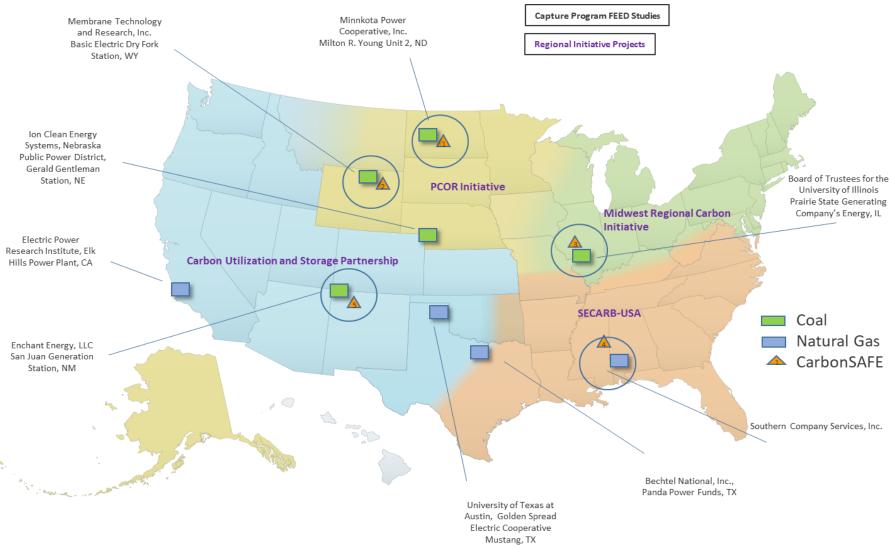
AOI 2: Commercial-Scale Carbon Capture Units on New or Existing Domestic Gas-Fired Power Plants or New Domestic Coal Plants

A Touchstone Energy® Cooperative



ELECTRIC POWER RESEARCH INSTITUTE

Capture & Storage.. Timeline Integration



Capture & Storage.. Regional Integration

2nd Generation Solvents.. Water-Lean (TRL 6)

Research Triangle Institute

Technology Centre Mongstad (TCM)

Current solvent technologies: ~30% amines & ~70% water (negative energy impacts)

SOLUTION:

CHALLENGE:

 Replace water (for ~5-10% total) with a hydrophobic non-aqueous solvent

SIGNIFICANT RESULTS

Techno-economic analyses indicate:

- Reduced Capital Costs: Smaller columns, heat exchangers, & footprint
- Reduced Operating Costs: Lower energy requirements

Lab/Bench Scale Development – 2009

- Proof of concept/feasibility (2009)
- Lab-scale testing (2010)
- Bench-scale testing (2014)
 - TEA ~capture cost ≤ \$40/tonne

Scale-Up Testing – 2016

- SINTEF's Tiller Plant (60 kWe).. 1500+ hrs.
- NCCC (50 kWe).. 570 hrs

Large Pilot-Scale Testing – 2018

- ~12 MWe scale testing at TCM
- Additional operational testing with RTI solvent

2nd Generation Solvents.. Flash Stripper(TRL 6

University of Texas

Solvent Process

Pilot absorber/stripper system with high temperature flash skid

CHALLENGE:

Low MEA absorption rate, working capacity, & thermal stability

SOLUTION:

- *Piperazine*.. Enhanced absorption kinetics, low degradation
- Flash stripper.. Increased working capacity & desorption pressure

SIGNIFICANT RESULTS

Techno-economic analyses indicate:

- Reduced Capital Costs: Smaller reactors & Reduced compression
- Reduced Operating Costs: Reduced solvent make-up

Lab/Bench Scale Development – 2010-2017

- Proof of concept/feasibility (2009)
- Lab-scale testing (2010)
- Bench-scale testing (2014)
 - TEA ~capture cost ≤ \$40/tonne

Small Pilot-Scale Testing – 2018

- NCCC (0.5 MWe).. 2000 hours of testing
- Validated robustness of PZ solvent & adv. flash stripper process configuration

FEED Study- 2020

 NGCC Retrofit + Piperazine Solvent + Advanced flash stripper

CAPEX/OPEX Reduction.. Solvent Management and Desorption opt.

Transformational CCS at NCCC.. TRL 5

- 110,000+ test hours, 60+ technologies tested, Developers from 7 countries
- 16 technologies in queue to test
- 7 scaled up (or ready) to 10+ MW

Process intensification

- Advanced contactors (GTI, RPB)
- Combined sorbents/HX (Altex)

Advanced materials

- -Membranes.. NETL, GTI, MTR, OSU, RPI, SUNY Buffalo
- -MOF sorbents.. PCI
- -Water-lean solvents.. CCSL, ION, PNNL, RTI
- Corrosion-resistant coating.. LumiShield

National Carbon Capture Center
Photo Source: Southern Company Services

https://netl.doe.gov/events/20VPRCU

Coal FIRST / H₂ Generation.. Critical Components

Modular Pre-combustion Capture System for Coal FIRST Poly-generation Process

Pre-combustion sulfur/contaminant removal & capture process based on integration of low temperature WGS with high temperature physical adsorbent from coal-based poly-generation system that produces power & ammonia

Relevance and Outcomes/Impact

- Improve process efficiency by 3% by selectively removing CO₂ & trace contaminants
- Improves overall efficiency (net efficiency >40% on HHV basis) by reducing amount of water needed to shift equilibrium-limited reaction

Media and Process Technology Inc.

Advanced Ceramic Membranes/Modules for H₂
Production/CO₂ Capture for
Coal-Based Polygeneration Plants

Extend current multiple tube "candle filter" membrane configuration to dual end (open both ends) design for use as a permeate purgeable support for inorganic membranes in pre-combustion CO₂ capture & poly-generation

Commercial dual end tubular ceramic membrane modules

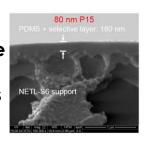
Relevance and Outcomes/Impact

- Microporous ceramic membranes are low cost, stable material for high temperature applications in harsh environments
- Development of inorganic membrane with "permeate purge" capability offers a breakthrough for scale-up & commercialization of inorganic membrane technology

Improving Flexibility through co-product generation & modularity

Transformational CCS at NETL.. TRL 3-4

Natural Gas Flue Gas/Industrial Capture

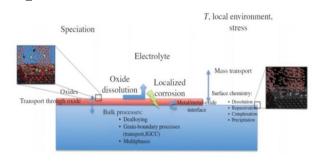

Facilitated Transport Ion Gel Membrane

Add to polymer matrix

High Permeance Supports for Thin Film Composites

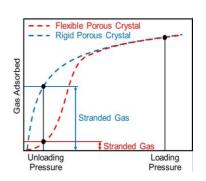
Amine functionalized PIM polymer sorbent

CO₂ Capture for Modular Scale Gasification

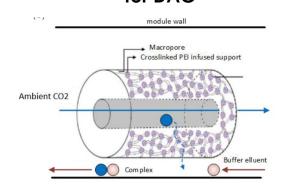

Modular CO₂ Capture Processes for Integration with Modular Scale Gasification Technologies: Literature Review & Gap Analysis for Future R&D

Authors

Kathryn Smith², Scott Chen², Nicholas Siefert¹

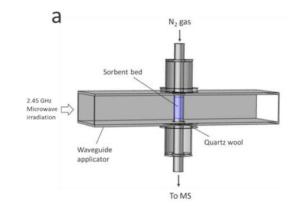

¹ U.S. DOE National Energy Technology Laboratory

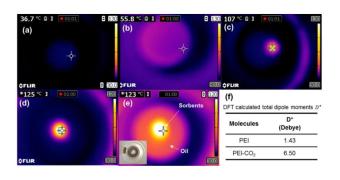
Corrosion of Steel in Pre-Combustion CO₂ Capture Absorption Equipment



Direct Air Capture

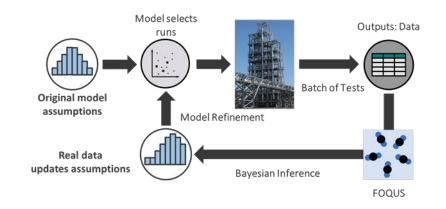
Computational Screening of Sorbents for DAC

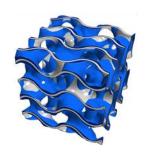


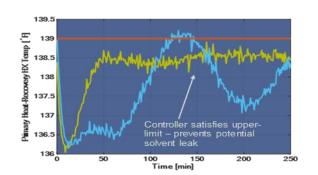

Hollow Fiber BIAS Sorbent for DAC

Coal FIRST

Microwave Assisted Sorbent Regeneration for Modular Scale CO₂ Capture






Enabling Capabilities.. CCSI²

Technology Area	Primary Objectives	CCSI ² Expertise
Direct Air Capture	Equipment/Materials design and Intensification; Pilot testing	Machine Learning; Sorbent modeling; CFD/Equipment Design; Design of Experiments
Industrial Capture	Optimize CCS integration; Process Intensification	Process Optimization; CCS modeling; Equipment Design
Blue H ₂	Process Intensification & Optimization; Process Intensification	Membrane/Sorbent/Reaction Modeling; Optimization; Multi-functional Equipment Design
Coal FIRST	CCS load following; Process Intensification	Dynamic/CCS Modeling; Polygen Optimization; Equipment Design

Design of Advanced Energy Systems (IDAES)/Carbon Capture Simulation for Industry Impact (CCSI2) Stakeholder Workshop, Oct. 1-22 2020 https://lbnl.zoom.us/webinar/register/WN_T9X0KwA5RkGSPYUbKVGQWg

Enabling Capabilities.. TEA & LCA

Historical Analysis Areas

Coal & Natural Gas for Power

- Baseline (Rev 2, 3)
- LCA
- **Retrofit Studies**
- Retrofit Databases
- Membrane, Solvent, Sorbent Evaluations

Current Analysis Topics

Coal and Natural Gas

- Baseline (Rev 4)
- NGCC with EGR Study Update
- Flexible Operation
- Dispatch models

Negative Emissions Technologies

- BECCS TEA and LCA
- Direct Air Capture Base Cases

Industrial Capture

- Development of Cement Specific Study
- Hydrogen Production
- LCA

Carbon Capture Program.. Outreach

Carbon Capture Program R&D Compendium

Carbon Capture Program Website

Carbon Capture Newsletter

CONCLUSIONS

- Carbon Capture needs to be nimble.. Low CO₂ concentrations & Low capacity factors
 - FE technology portfolio is being leveraged for NETS, NGCC, and Industrial
 - Need transformational carbon capture systems to support Coal FIRST (polygen, load following capabilities)
- Many advances in CAPEx & OpEx reduction...
 - Recent advances in simulation, materials & additive manufacturing can decrease the overall cost of capture
- LCAs and TEAs remain critical evaluation tools...
 - Need to validate dynamic models with pilot data; start evaluating CCS within capacity expansion models
- Carbon Capture/Utilization/Storage integration across DOE and international programs is critical

Questions

http://www.netl.doe.gov/research/coal/carbon-capture

Dan Hancu

Technology Manager
Carbon Capture
U.S. Department of Energy
National Energy Technology Laboratory
412-539-6804
Dan.Hancu@netl.doe.gov

Lynn Brickett

Program Manager
Carbon Capture
U.S. Department of Energy
Office of Fossil Energy
412-386-6574
Lynn.Brickett@hq.doe.gov

