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Project Overview

• Overall Project Objectives:
– Design, Manufacture, Characterize, and Model a structured-packing with in-situ cooling by using 3D printing 

techniques to tailor precise packing geometries

• Project Budget:
– DOE-NETL: $2,599,521 

– ION & Partners: $699,837

• Project Results
– MAP modules were successfully fabricated at 10-inch diameter and 12-inch height stacked to create a 

packed column

– MAP modules showed higher pressure drop and lower effective area than standard structured packing to 
accommodate intracooling channels

– MAP intracooling significantly outperforms both adiabatic and intercooled absorbers despite lower hydraulic 
and mass transfer performance 

2



Technology Background
High Temperature Bulge for Fast, Low Heat Capacity Solvents

Source: Thimsen et al., GHGT-12, 2014 

ION Campaign at TCM (2016-17) 

• Testing operating window was 
limited by absorber materials (Tmax)

• Additionally, temperature bulge 
affects solvent capacity, emissions, 
and degradation

• Hence, how can we incorporate in-
situ cooling throughout the 
absorber column? 
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Technology Background
“Rapid Design and Testing of Novel Gas-Liquid Contacting Devices for 
Post‐Combustion CO2 Capture via 3D Printing”

ION has initiated the development of an innovative internal absorber design including 
distributor, mass transfer, heat exchange and collectors through additive fabrication 
techniques

The application of 3-D printing is to significantly reduce the costs of such columns
• Accelerates the design cycles of gas‐liquid contacting devices

• Design process is entirely software-based 

• Devices are parametrically engineered

• Rapid and flexible feedback loop between design, fabrication and testing that can only be provided 
through 3-D printing advance more quickly the performance and lower the costs of novel gas-liquid 
contacting devices for CO2 capture
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Project Scope (Budget Period 2)

• Fabricate MAP characterization rig

• Baseline Mellapak 250Y

– Hydraulics, Effective Area

• Characterize MAP

– Hydraulics, Effective Area, Cooling

• Utilize data for modeling in situ

absorber intracooling with MAP
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Characterization Rig
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Characterization Results: Hydraulics
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Characterization Results: Effective Area
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ProTreat® Modeling of MAP Intracooling

• 25 m of Total Packing; 22 m Diameter

• 10 m of MP250Y on Top and Bottom

• 5 m of MAP in Middle Section

– Hydraulics of MP452Y

– Effective Area = 35% MP452Y

– 10 sections of 0.5 m height; distributed cooling  

• FG Inlet: 82,600 kmol/hr, 40 °C,12.6 vol% CO2

• Lean: 30 wt% MEA, 40 °C, 0.24-0.35 mol CO2/mol MEA

• Vary cooling and solve MEA flow for 90±0.2% capture 

• Determine effect on MEA Capacity, Pressure drop, and 

Temperature profiles
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Capacity Increase with MAP Intracooling
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MAP Intracooling for MEA: Temperature Profiles
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Intracooling vs. Intercooling

Intracooling Mid 5m
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MAP Project and Commercial Development

• Future Project Work
– Measure Intracooling Channel Hydraulics (Expected flow of 3-6 lpm per module with minimal 

backpressure)

– Measure Intracooling Channel Heat Transfer (Designed for full intracooling duty when scaled 

up and using typical cooling water conditions)

• Path to Commercialization
– Further study of integrated distributors

– Cooling water manifold design at scale

– Cost reductions and size increase of 3D printing technology

– Possible application for stripper intraheating
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Project Summary and Results

• Largest 3D-printed packed column fabricated and characterized
– 10 inch O.D., 12 foot packed height column

– Hydraulically characterized with air/water and air/water/glycerin; higher pressure drop to 
accommodate intracooling channels

– Effective area characterized with air/NaOH; excellent results consistent with full wetting at 
applicable liquid flow rates

• Absorber modeling with direct experimental results
– Intracooling most important when mass transfer pinch occurs at temperature bulge

– Intracooling away from mass transfer pinch limits maximum temperature, but decreases MEA 
capacity and increases pressure drop

– Despite hydraulic and mass transfer limitation, intracooling outperforms intercooling
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Project Schedule
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Project Overview
Deliverables & Milestones

Deliverables
# Corresponding 

Task/Subtask Title/Description

D1 1.0 Project Management Plan – BP1 

D2 2.4 Test internals final design (report)

D3 3.3 Initial test plan

D4 1.0 Project Management Plan – BP2

D5 6.2 Concept evaluation (report)

Milestones

# Task Milestone Title / Description
Original 

Completion 
Date

Revised 
Completion 

Date

Actual 
Completion 

Date

M1 1 Project Management Plan 2/19/18 N/A 4/30/18 (V1.1)
(On-Going)

M2 1 Kickoff Meeting 4/19/18 N/A 7/19/18

M3 2 MAP module design finalized 9/30/18 N/A
11/20/18*

(Redesign Q1 
2019)

M4 4 MAP prints completed 12/15/18 10/31/19

M5 5 MAP modules installed & 
commissioned 2/15/19 2/15/20

M6 5 Packing characterization 
completed 5/31/19 3/31/20
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MAP Intracooling for MEA
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MAP Intracooling for MEA
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