#### Membrane-Sorbent Hybrid System for Post-Combustion CO<sub>2</sub> Capture (Contract No. DE-FE-0031603)



Gökhan Alptekin Ambal Jayaraman David Gribble Matthew Cates Jerrod Hohman Freya Kugler Douwe Bruinsma

DOE/NETL Carbon Capture Project Review Meeting

October 7, 2020

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

## **Project Objective**

- Project objective is to design and construct a ~1 MW scale membrane-sorbent hybrid post-combustion carbon capture system and evaluate its operation in a long duration field test using flue gas
- Hybrid process consists of a polymeric membrane and a low temperature physical adsorbent to remove CO<sub>2</sub> from the flue gas
  - Membrane is being developed by MTR
  - Adsorbent has been developed by TDA for post-combustion capture
  - Early proof-of-concept demonstrations in an SBIR Phase II/IIB project (DE-SC0011885) proved the feasibility of the hybrid system

#### Main Project Tasks

| BY1 | <ul> <li>Completed the design of the 1 MW scale test unit</li> </ul> |
|-----|----------------------------------------------------------------------|
|     | ✓ Completed the Initial Design Review                                |
|     | <ul> <li>Completed Preliminary Techno-economic analysis</li> </ul>   |
| BY2 | ✓ Fabrication of the test unit                                       |
|     | - Site Preparation, Installation and Shakedown Tests (9/2020)        |
| BY3 | - Field Tests (6-9 months duration)                                  |
|     | - High Fidelity Techno-economic analysis                             |



# **Project Team**





Membrane Technology & Research

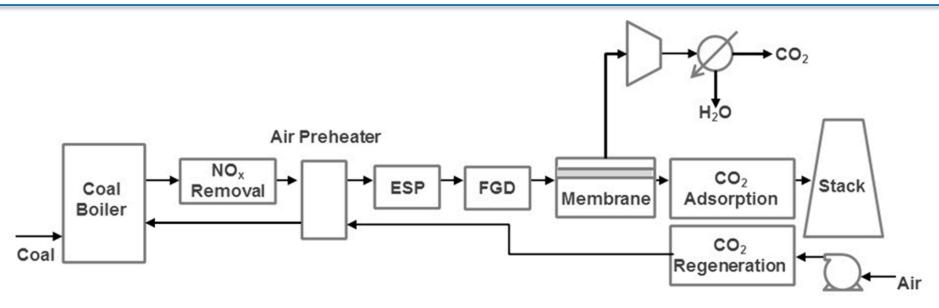


#### **Project Duration**

- Start Date = August 17, 2018
- End Date = August 16, 2021

#### **Budget**

- Project Cost = \$10,000,025
- DOE Share = \$8,000,000
- TDA and its partners = \$2,000,025




3

LOGY

NGSTAD

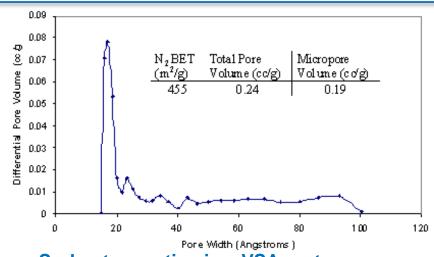
#### **Hybrid Membrane Sorbent Process**



Primary Air Fan

- Membrane operates at ~50°C under mild vacuum, (~0.3 atm) removes ~50% of CO<sub>2</sub> and almost all water
  - TDA's sorbent removes remaining CO<sub>2</sub> in the membrane effluent (retentate) ensuring 90% carbon capture
  - The boiler feed air is used as a sweep gas to facilitate sorbent regeneration
- Advantages
  - Low pressure drop and high performance at the low P<sub>CO2</sub> in the second stage
  - Greatly reduced oxygen transfer (from the air side to flue gas side)




## **TDA Sorbent**

- TDA developed a mesoporous carbon sorbent modified with surface functional groups that remove CO<sub>2</sub> via strong physical adsorption
  - CO<sub>2</sub>-surface interaction is strong enough to allow operation at low partial pressures
  - Because CO<sub>2</sub> is not bonded, the energy input for regeneration is low
- Heat of CO<sub>2</sub> adsorption is 4-5 kcal/mol

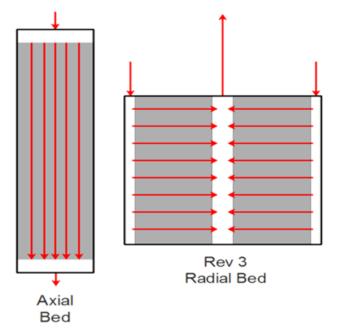


US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354

Sorbent optimization and production scale-up was completed in a separate DOE project (DE-0013105)



Sorbent operation in a VSA system was successfully demonstrated with actual flue gas (DE-0013105)




#### SBIR Phase IIB – Evaluation of the Hybrid System



100 SCFM Membrane-Sorbent Hybrid Test System

WITC near Basin Electric's Dry Fork Station in Gillette, WY



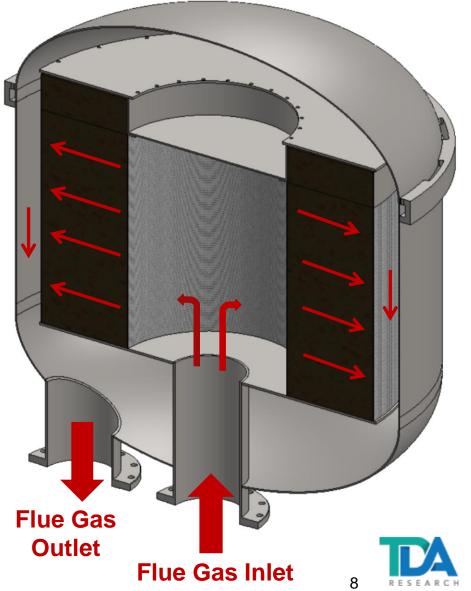
- 100 CFM evaluation removing 1 ton/day CO<sub>2</sub>
- Field tests January-July 2020
- Successfully demonstrated the integrated operation with 95+% capture efficiency at the desired flow rate
- Both "hybrid operation" and "sorbent only" evaluations were carried out
  - 50-60% CO<sub>2</sub> purity with the membrane
  - 95+%  $CO_2$  purity with the sorbent (due to low N<sub>2</sub> affinity over the sorbent)



# **Current Project Focus**

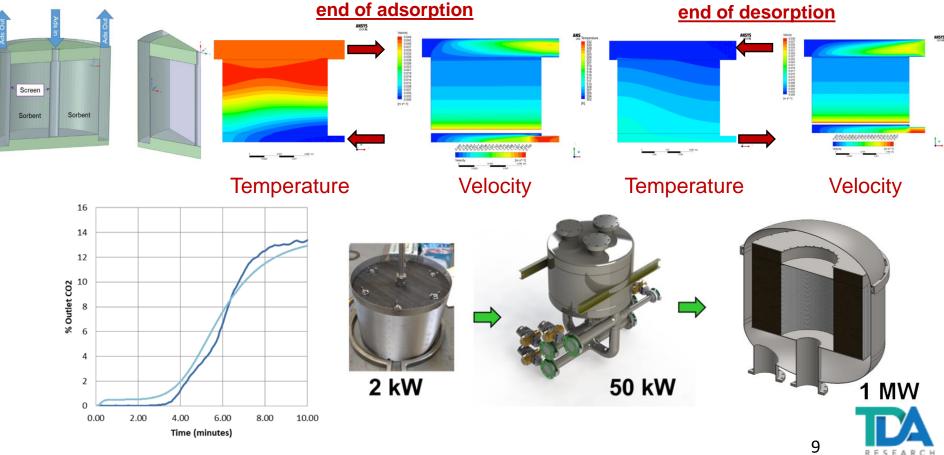
**TDA's Sorbent System** 

- TDA will further develop/demonstrate its radial outflow sorbent reactor concept
- MTR will modify an existing unit (20 TPD) previously developed under the DOE funding
  - The unit will be equipped with MTR's legacy membranes
- The integrated test unit will be evaluated at the Technology Center Mongstad (TCM)

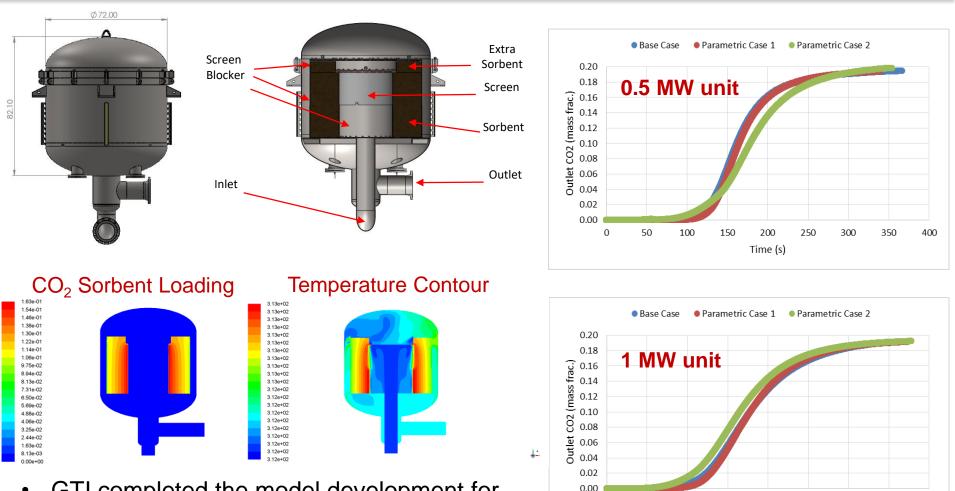



Existing MTR Membrane Module (20 TPD evaluated at NCCC) **TCM Mongstad, Norway** 




# **Design of the 1 MW Reactor**

- Bed volume = 1.33 m<sup>3</sup> (with additional room for contingencies)
- Inner screen dia. = 30"
- Outer screen dia. = 62"
- Vessel OD = 72"
- Piping = 12" SCH40S
- Locking ring flange for access
- Vessel weight (w/o sorbent) = 3,000 lb
- dP = 44 mbar (8x16 mesh sorbent)
- dP = 106 mbar (12x40 mesh sorbent)
- Removable reactor end cap/head to allow sorbent fill
- Sorbent bed is a donut shaped basket loaded from the top
- Blanked off section will prevent channeling due to bed shrinkage
- Minimal media handling is required to test modular reactor concept




# **Design of the Sorbent Vessels**

- Design work is supported with CFD simulations to determine the intramodular flow, concentration and temperature distributions
  - Understanding flow distribution is critical to design an effective gas-solid contactor
- Data validation from the smallest test module is now complete

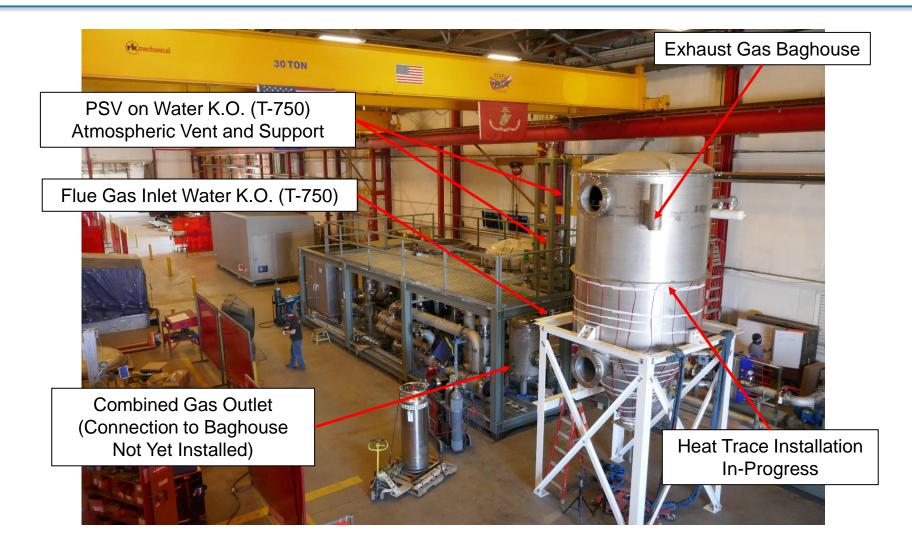


# **CFD Modeling of Sorbent Reactor**



Time (s)

- GTI completed the model development for the radial sorbent beds that will be used in the field
- Clean breakthrough curves


#### **Design of the Sorbent System**



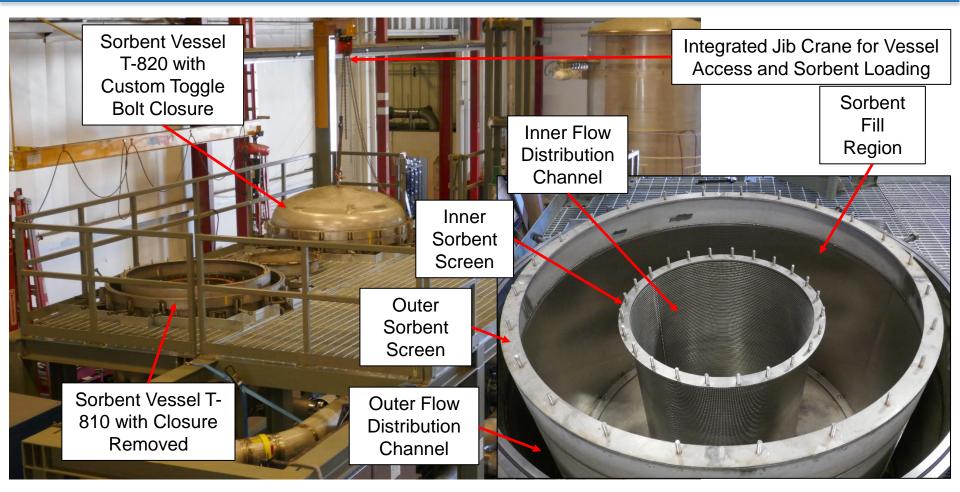
Assembled Onsite from Multiple Skids (All Skids Pack Into Hi-Cube Conex for Low-Cost Shipping)



#### **Sorbent Subsystem**






#### **TDA's Dual-Bed Sorbent Subsystem**



- TDA dual-bed sorbent system is fully assembled
- 3 skids + baghouse can be transported by low-boy trailer (domestic) or flat-rack (oceanic) for economical deployment

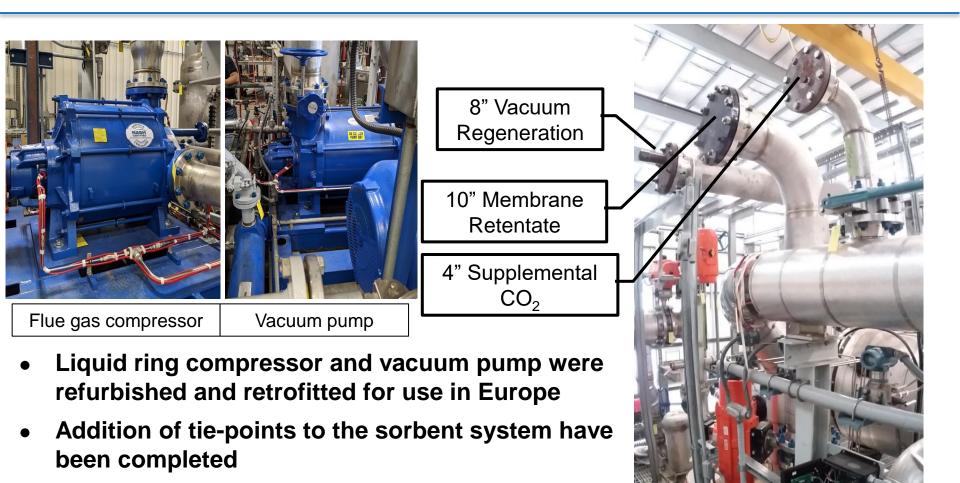


## **Progress on Skid #2 (Sorbent Vessels)**



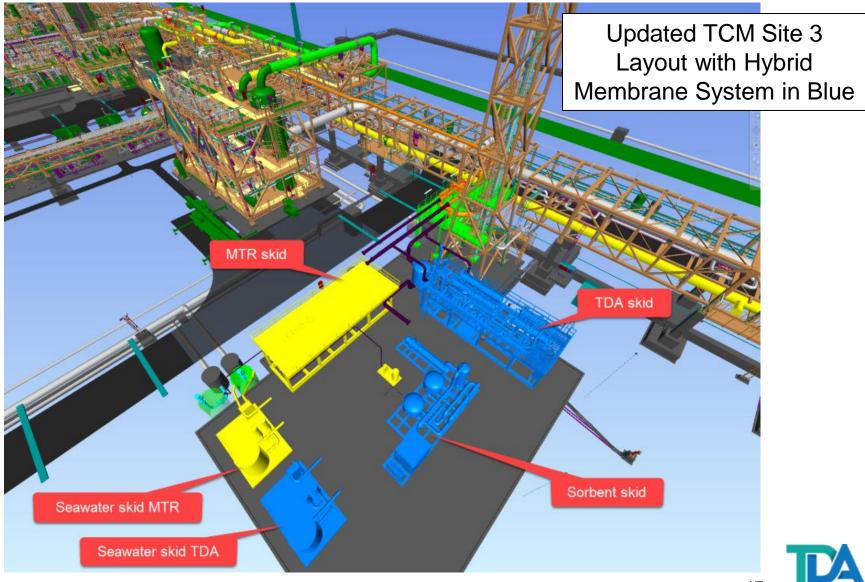
- Integrated Jib Crane (1/vessel) for self-sufficient sorbent loading/unloading & maintenance
- Custom wedge wire screens for sorbent retention (radial flow, Π-configuration)
- Upper decking and work platform with ladder, swing gate, and railing for safety



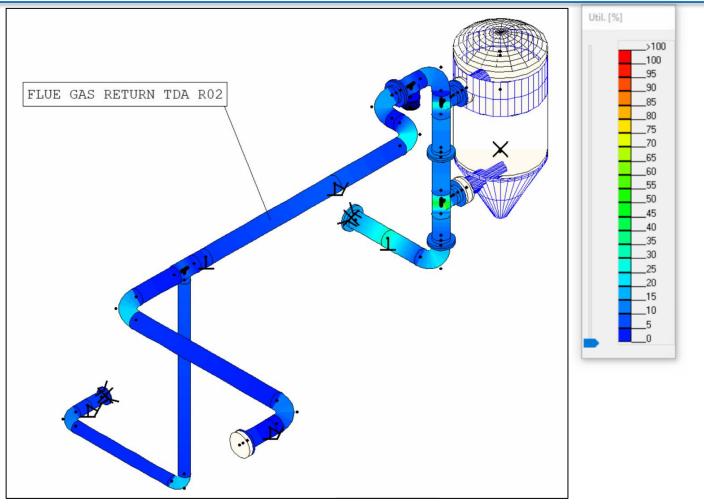

# **MTR Membrane Equipment**



- MTR membrane equipment is housed on two skids stacked vertically
  - Lower skid houses the flue gas handling equipment
  - Membrane modules are located on the upper skid
- The skids are assembled for testing at fabrication shop in Dupo, IL

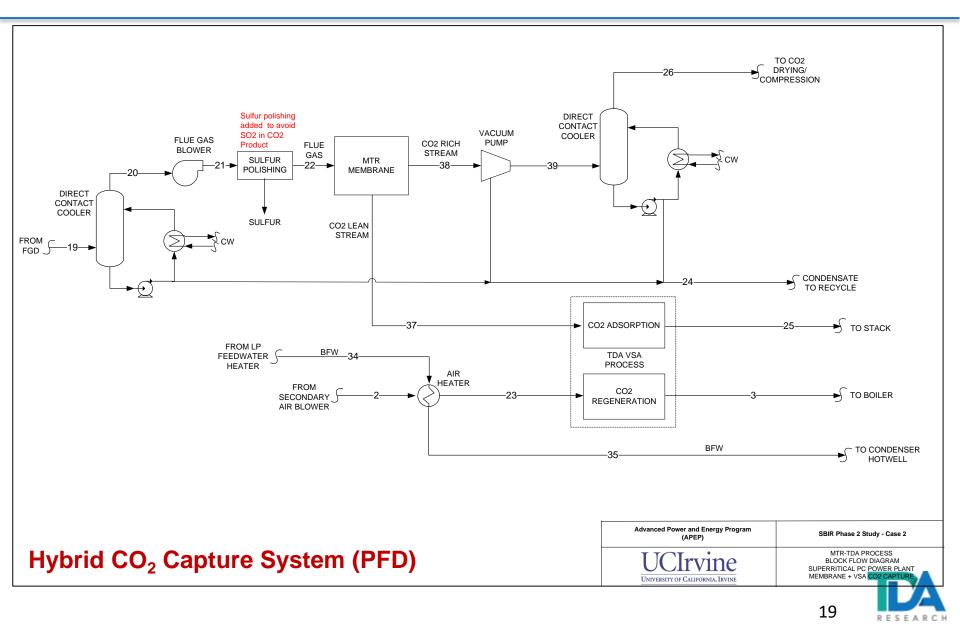



## **MTR Skid Modifications**




- Control system
  - Checked all five operating sequences for the membrane system
  - Checked all interlocks functionality

#### **TCM Site Layout**




#### **TCM Site Connections**

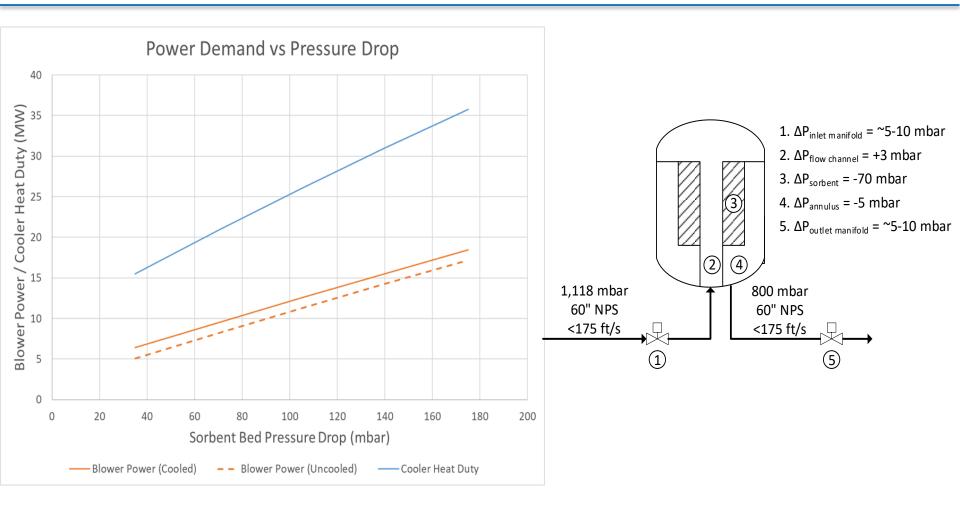


- Pipe stress analysis has been complete with planned supports to API 660
- The 16" exhaust pipe is the largest/heaviest pipe and presents the greatest concern; TCM, TDA, and RKE collaborated to minimize stress on the baghouse flanges

#### **Aspen Process Modeling (UCI)**



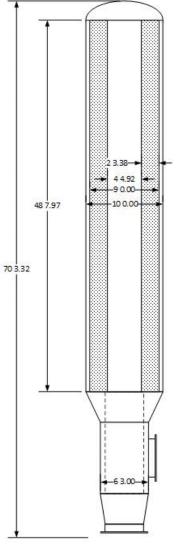
## **Plant Performance**


| CASE NO.                                      | UNITs     | DoE 11               | DoE 12          | MTR WP Study  | TDA + MTR 3                 | Sorbent Only                    | Sorbent Only                  |
|-----------------------------------------------|-----------|----------------------|-----------------|---------------|-----------------------------|---------------------------------|-------------------------------|
| CO <sub>2</sub> capture technology            |           | Reference No Capture | Reference Amine | Membrane Only | Membrane-<br>Sorbent Hybrid | Sorbent Only -<br>Recirculation | Sorbent Only -<br>Steam Purge |
| CO <sub>2</sub> purity from separation Module |           |                      | 95%             | 80%           | 80%                         | 95%                             | 95%                           |
| Steam turbine power                           | kWe       | 580,400              | 662,800         | 780,795       | 750,371                     | 706,396                         | 696,828                       |
| Total auxiliary consumption                   | kWe       | 30,410               | 112,830         | 224,605       | 197,832                     | 156,393                         | 146,829                       |
| Net power output                              | kWe       | 549,990              | 549,970         | 556,190       | 552,539                     | 550,003                         | 549,999                       |
| Auxiliary load summary                        |           |                      |                 |               |                             |                                 |                               |
| Flue gas booster + CO <sub>2</sub> removal    | kWe       | 0                    | 20,600          | 50,170        | 20,630                      | 11,839                          | 7,513                         |
| VSA Vacuum pump                               | kWe       | 0                    | 0               | 37,475        | 33,578                      | 50,932                          | 49,891                        |
| CO <sub>2</sub> compression                   | kWe       | 0                    | 44,890          | 75,768        | 72,900                      | 48,828                          | 45,842                        |
| CO <sub>2</sub> cryogenic purification        | kWe       | 0                    | 0               | 20,397        | 18,675                      | 0                               | 0                             |
| Common Auxiliaries                            | kWe       | 30,410               | 47,340          | 40,795        | 52,049                      | 44,794                          | 43,583                        |
| % Net plant efficiency                        | % HHV     | 39.3                 | 28.4            | 28.7          | 29.6                        | 30.8                            | 32.5                          |
| Net heat rate                                 | kJ/kWh    | 9,165                | 12,663          | 12,585        | 12,223                      | 11,677                          | 12,462                        |
| Condenser cooling duty                        | 10^6 kJ/h | 2,298                | 1,737           | 3,077         | 2,966                       | 2,794                           | 3,035                         |
| Consumables                                   |           |                      |                 |               |                             |                                 |                               |
| As-received coal feed                         | kg/h      | 185,759              | 256,652         | 256,715       | 247,755                     | 236,681                         | 224,207                       |
| Carbon captured                               | %         | 0                    | 90              | 90            | 90                          | 90                              | 90                            |

• TDA's membrane sorbent hybrid system has a net plant efficiency of 29.6% compared to 28.7% in MTR-Worley Parson Study which used compressed flue gas

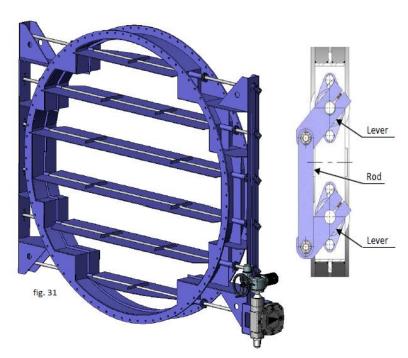
- Energy savings mainly from low pressure operation of membrane
- More membrane area needed to achieve similar flux, impact on selectivity is minimal
- Comparatively using a sorbent only system with recirculation like the hybrid system will allow us to achieve the 95% purity target in a single system resulting in a net plant efficiency of 30.8%
- Sorbent Only System with VLP Steam Purge could provide 32.5% efficiency




#### **Pressure Drop Constraint**



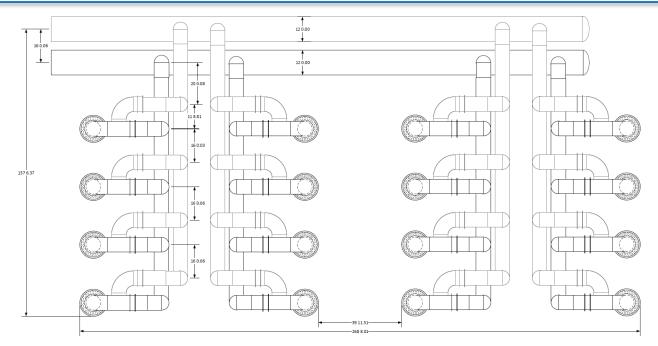
 Parasitic power demand for gas compression is estimated to range from 1% to 3.5% of plant capacity




#### **Reactor Vessel Design / Valve Selection**



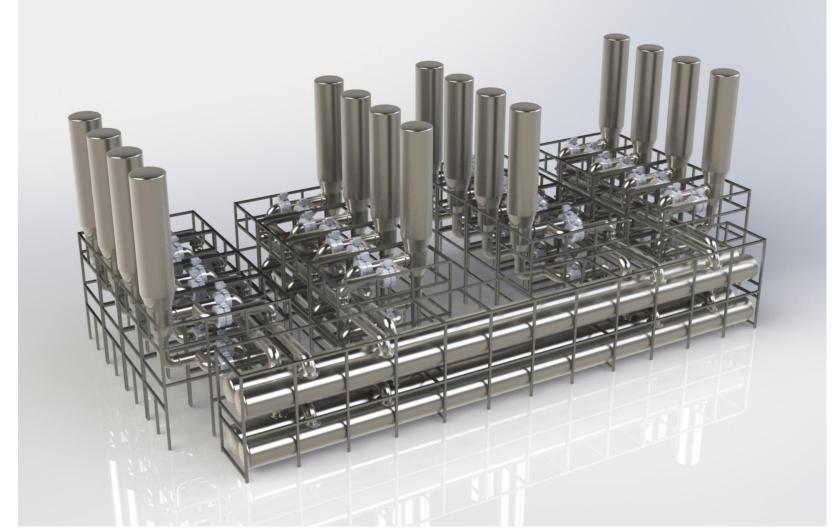
| orbent System - Hybrid |                             |                   |  |  |  |  |
|------------------------|-----------------------------|-------------------|--|--|--|--|
|                        | Stage I                     | Stage II          |  |  |  |  |
| Bed 1                  |                             |                   |  |  |  |  |
| Bed 2                  |                             |                   |  |  |  |  |
| .20s                   | 60s                         | 60s               |  |  |  |  |
|                        | Adsorptio                   | n - Flue gas flow |  |  |  |  |
|                        | Desorption - Air Purge flow |                   |  |  |  |  |
|                        | ∆P=10                       | 5 mbar            |  |  |  |  |
|                        | Module size                 | 68.75 MW          |  |  |  |  |
|                        | No. of trains               | 8                 |  |  |  |  |
|                        | No. beds per train          | 2                 |  |  |  |  |
|                        | Total no. of beds           | 16                |  |  |  |  |
|                        | Flue gas flow               | 63.0 m3/s         |  |  |  |  |
|                        | CO2 flow                    | 0.63 tonne/min    |  |  |  |  |
|                        | Capacity                    | 1.7% wt. CO2      |  |  |  |  |
|                        | Bed online                  | 1 min             |  |  |  |  |
|                        | Sorbent needed              | 37.2 tonne        |  |  |  |  |
|                        | density                     | 0.56 tonne/m3     |  |  |  |  |
|                        | Bed vol.                    | 66.4 m3           |  |  |  |  |
|                        | Bed CSA                     | 6.6 m2            |  |  |  |  |
| I                      |                             |                   |  |  |  |  |


- Reactor design and valve selection is interdependent
- Double acting pneumatic actuator with travel time of 3-5 seconds were identified



- Sixteen (16) radial beds
- SA516-70 carbon steel, 0.5" thickness, 120 in OD x 565 in T/T




# **Piping Layout and Costing**



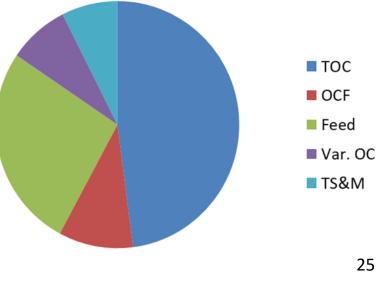
- 60 in NPS, 0.375 in thickness (standard schedule) piping for flue gas and air regeneration lines
- Two (2) 12 ft OD flue gas distribution and return manifolds
- 2,000 linear feet, estimated from concept layout
- Weight of steel 240 lb/ft
- Assumed cost of steel \$1.73 / lb (SA-106B)
- Total piping cost \$1,094,679 (CEPCI 607.5 2019)



#### **3-D Layout of the Hybrid Sorbent System**

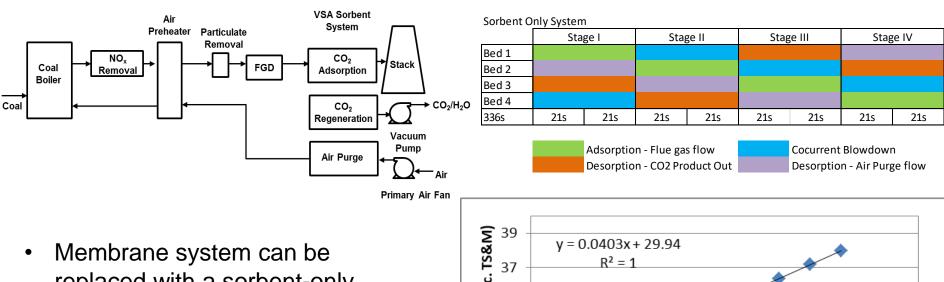




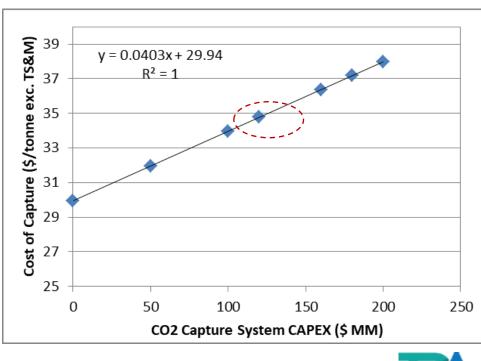

# Hybrid CO<sub>2</sub> Capture System Cost

| Acct                 |                                                   | Equipment        | Material | 1aterial Labor  |          | Bare Erected Eng'g CM |                         | Contingencies  |                | TOTAL PLANT COST |            |
|----------------------|---------------------------------------------------|------------------|----------|-----------------|----------|-----------------------|-------------------------|----------------|----------------|------------------|------------|
| No.                  | Item/Description                                  | Cost             | Cost     | Direct          | Indirect | Cost \$               | H.O. & Fee              | Process        | Project        | \$               | \$/kW      |
| 5A                   | FLUE GAS TREATMENT                                | 7,668            | 2,089    | 4,175           | -        | 13,932                | 1,343                   | -              | 3,054          | 18,329           | 33         |
| 5A.1                 | Flue Gas Blower                                   | 3,513            | 703      | 1,405           | -        | 5,621                 | 542                     | -              | 1,232          | 7,395            | 13         |
| 5A.2                 | Direct Contact Cooler                             | 2,558            | 1,066    | 2,132           | -        | 5,756                 | 554                     | -              | 1,262          | 7,573            | 14         |
| 5A.3                 | Booster Air Fan                                   | 1,597            | 320      | 638             | -        | 2,555                 | 247                     | -              | 560            | 3,361            | 6          |
| 5B                   | CO2 REMOVAL                                       | 80,115           | -        | 33,214          | -        | 113,330               | 11,333                  | 8,869          | 26,706         | 160,238          | 291        |
|                      |                                                   |                  |          |                 |          |                       | 2 704                   |                |                | 10.004           | 70         |
| 5B.1                 | Membrane Modules                                  | 13,907           | -        | 13,907          | -        | 27,815                | 2,781                   | 5,563          | 7,232          | 43,391           | 79         |
|                      | Membrane Modules<br>Sorbent Beds & Valves         | 13,907<br>11,020 | -        | 13,907<br>5,510 | -        | 27,815<br>16,530      | ,                       | 5,563<br>3,306 | 7,232<br>4,298 | 43,391           | 79<br>2 47 |
| 5B.2                 |                                                   | ,                |          | ,               | -<br>-   | ,                     | ,                       |                |                |                  |            |
| 5B.2<br>5B.3         | Sorbent Beds & Valves                             | 11,020           |          | 5,510           |          | 16,530                | 1,653                   | 3,306          | 4,298          | 25,787           | 47         |
| 5B.2<br>5B.3<br>5B.4 | Sorbent Beds & Valves<br>CO2 Purification Systems | 11,020<br>16,472 |          | 5,510<br>4,118  | -        | 16,530<br>20,590      | 1,653<br>2,059<br>4,840 | 3,306          | 4,298<br>4,530 | 25,787<br>27,178 | > 47<br>49 |

- CO<sub>2</sub> Capture System Cost for hybrid membrane sorbent process \$160.2 MM
- With flue gas treatment subassembly (blowers , DCC etc.) \$178.6 MM
- TDA's carbon Sorbent needed for initial load of 600 tonne at \$4/kg is \$2.4 MM


| Cost of Electricity | \$ 2011 basis |
|---------------------|---------------|
| тос                 | 61.03         |
| OCF                 | 12.56         |
| Feed                | 33.84         |
| Var. OC             | 10.25         |
| ts&M                | 9.44          |
| COE \$/MWh          | 117.68        |
| COE w TS&M \$/MWh   | 127.13        |
|                     |               |
|                     |               |

| Cost of CO2 Captured | \$<br>38.89 |
|----------------------|-------------|
| exc. TS&M (\$/tonne) |             |






# **Sorbent Only Recirculation - CAPEX**



- Membrane system can be replaced with a sorbent-only system
- Enables recovering CO<sub>2</sub> with high purity and reduce downstream purification systems and improve efficiency
- At a CAPEX of \$160 MM, the cost of carbon capture can be reduced to ~\$35/tonne



#### **Acknowledgements**

- DOE/NETL funding under the DE-FE-0013105 project
- Project Manager, Andy O'Palko
- Chuck Shistla, GTI
- Ashok Rao, UCI
- Arvind Rajandran, UOA
- Frank Morton, NCCC
- Chen Chaomei and Ruan Tian, Sinopec
- Yang Xujie, Yangtze Petrochemicals Nanhua Plant

