Pilot Testing of a Highly Efficient Pre-combustion Sorbent-based Carbon Capture System (Contract No. DE-FE-0013105)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Matt Cates Mike Bonnema David Gribble Jim Dippo Freya Kugler

2020 DOE/NETL Carbon Capture Technology Review Meeting

October 6, 2020

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Summary

- The objective is to develop a new sorbent-based pre-combustion capture technology for Integrated Gasification Combined Cycle (IGCC) power plants
- Demonstrate techno-economic viability of the new technology by:
 - 1) Evaluating technical feasibility in 0.1 MW_e slipstream tests
 - 2) Carrying out high fidelity process design and engineering analysis
- Major Project Tasks
 - ✓ Sorbent Manufacturing
 - ✓ Performance validation via long-term cycling tests
 - ✓ Reactor Design
 - ✓ CFD Analysis and PSA cycle optimization/adsorption modeling
 - ✓ Fabricate a Pilot-scale Prototype for Demonstration
 - ✓ Evaluations at various sites using coal-derived synthesis gas
 - ✓ Techno-economic analysis
 - ✓ High fidelity engineering analysis and process simulation

Project Partners

Project Duration

- Start Date = January 1, 2014
- End Date = March 31, 2021 ۲

Budget

- **Project Cost = \$9,929,228** •
- **DOE Share = \$7,943,382** ۲
- TDA and its partners = \$1,985,846 •

TDA's Sorbent

- TDA's uses a mesoporous carbon with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Net energy loss in sorbent regeneration is similar to Selexol; much higher IGCC efficiency can be achieved due to high temperature CO₂ capture
- Favorable material properties
 - Pore size is tuned to 10 to 100 A
 - Mesopores eliminates diffusion limitations

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354 US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion CO_2 Capture System Using a Regenerable Sorbent"

Integration to the IGCC Power Plant

- Higher mass throughput to gas turbine higher efficiency
- Lower GT temperature Reduced need for HP N₂ dilution hence lower NO_X formation
- Elimination of heat exchangers needed for cooling and re-heating the gas
- Elimination of gray water treatment problem
- Potential for further efficiency improvements via integration with WGS

Operating Conditions

- CO₂ is recovered via combined pressure and concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures
 high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants

Technology Maturation Timeline

2008	2011	2013	2014	2017	2018	2019
Bench- scale tests	0.5-1 kW tests at NCCC	0.5-1 kW tests at Wabash River IGCC	Sorbent Scale-up IP secured	0.1 MW tests at NCCC	Integrated with WGS Tests with Praxair	0.1 MW Tests at Sinopec/ Yangtze Chemicals Nanhua Plant

Primary Focus

- 0.1 MW_e evaluation in a world class IGCC plant to demonstrate full benefits of the technology
 - Testing with high pressure gas
- Demonstrate full operation scheme
 - 8 reactors and all accumulators
 - Utilize product/inert gas purges
 - H₂ recovery/CO₂ purity
- Evaluations at various sites using coal-derived syngas
 - Field Test #1 at NCCC Air blown gasification
 - Field Test #2 at Sinopec Nanhua Petro-chemical Plant, Nanjing, Jiangsu Province, China – Oxygen blown gasification

Nanhua Plant Syngas Supply					
Composition	mol%				
H2	32.493				
CO	0.546				
CO2	24.715				
H2S	0.083				
COS	0				
C1	0.021				
N2	0.128				
AR	0.05				
NH3	0.069				
HCN	0				
HCL	0				
H2O	41.895				
温度 Temperature, C	265.6				
压力 Pressure, MPaG	4				

National Carbon Capture Center

Sinopec/Yangtzi Chemicals Petrochemical Complex

Slipstream Test Skid - Top View

Field Test Unit Installed at NCCC

- Fabrication is completed in 2016
- Installation with all the hook-ups were completed in March 2017
- Testing initiated in April 2017

Working Capacity of the Sorbent

- A successful 30 day (707 hrs) evaluation was completed at NCCC
 - Design flow at NCCC operating conditions was 1,420 SLPM (50 SCFM)
 - 97.3% capture @ 1,500 SLPM
 - 93% @ 1,800 SLPM
 - 90% @ 2,100 SLPM
- Pressure drop through the gas conditioning skid prevented flowing more than 2,100 SLPM of syngas through the PSA skids

Sorbent Evaluations – Multiple Cycles

	Synthesis	Simulated	Steam		
	Gas	Gas	Purge		
Temperature	200°C	200°C	200°C		
Pressure	500 psig	200-500 psig	50-300 psig		
	Composition				
H_2	42.8%	53.4%	50.0%		
CO ₂	30.0%*	30.0%	-		
H ₂ O	26.6%	26.6%	50.0%+		
CO	0.6%	-	_		

Long-term cycling of the scaled-up sorbent has been completed with stable performance over 60,000 cycles

* adjusted for purge with 100% steam at 150 psia

CFD Model Tuning

- Working with GTI, we developed a CFD model to support reactor design
- The model was tuned using the data from 1 kW and 0.1 MW systems evaluated at Wabash River IGCC Plant and NCCC field tests
- CFD simulations reached steady state in 6 cycles and the working capacity matched the data sets
- CFD model was also tuned using the data from Sinopec test

Cycle Optimization

 Cycle Schemes D, E and F that use pressure equalizations and co-current blowdown met DOE targets of 90% capture and 95% CO₂ purity

Minimization of Energy Penalty

Reactor Design

- Different reactor concepts have been evaluated
- Multiple train vertical reactors with internal flow distribution are selected for final design

	Vessels and Adsorbents	GE Gasifier	
A A		Syngas flow, kmol/h	34,747
		Sorbent needed, kg	1,115,903
		L	1,859,838
		Cycle time, min	8
		Ads. GHSV, h ⁻¹	1,117
		Total Beds	16
		Bed. Volume, L	116,240
		Bed Dimensions	
		Diameter, ft	14
		Length, ft	30.1
		Vessel wall thickness, in	5.0
		L/D	2.30
	Value Strie	Particle size, in	1/8
	Valve Shiu	Bed Pressure dron nsid	3.6

TDA Design

Source: Honeywell/UOP

World-class PSA systems used in H₂ purification produces up to 400,000 m³/hr H₂ (compared to ~780,000 m³/hr flow rate used in TEA base case)

Full-scale System Design

Major Units

- 8 beds x 2 = 16
- 2 accumulator X 2 = 4
- Cycling Valves
 - $6 \times 8 \times 2 = 96$
- 2 recycle compressors
- 2 isolation vales x 2 per train = 4

Techno-economic Analysis

Gasifier	E-Gas		G	ìE	
Case	1	1 2		4	
	Cold Gas Cleanup	Warm Gas Cleanup	Cold Gas Cleanup	Warm Gas Cleanup	
CO ₂ Capture Technology	Selexol [™]	TDA's CO ₂ Sorbent	Selexol [™]	TDA's CO ₂ Sorbent	
CO ₂ Capture, %	90	90	90	90	
Gross Power Generated, kW	710,789	670,056	727,633	674,331	
Gas Turbine Power	464,000	425,605	464,000	417,554	
Steam Turbine Power	246,789	244,450	257,657	246,746	
Syngas Expander Power	-	-	5,977	10,031	
Auxiliary Load, kW	194,473	124,138	192,546	120,661	
Net Power, kW	516,316	545,917	535,087	553,671	
Net Plant Efficiency, % HHV	31.0	34.1	32.0	34.5	
Coal Feed Rate, kg/h	220,549	212,265	221,917	213,013	
Raw Water Usage, GPM/MW	10.9	10.3	10.7	10.5	
Total Plant Cost, \$/kW	3,464	3,102	3,359	3,212	
COE without CO ₂ TS&M, \$/MWh	136.8	122.3	133.0	125.5	
COE with CO ₂ TS&M, \$/MWh	145.7	130.4	141.6	133.4	
Cost of CO₂ Capture, \$/tonne	43	30	37	31	

- IGCC plant with TDA's CO₂ capture system achieves higher efficiencies (34.5% and 34.1%) than IGCC with Selexol[™] (32.0% and 31.0%) for the E-Gas[™] and GE gasifiers
- Cost of CO₂ capture is calculated as \$31 and \$30 per tonne for GE and E-Gas[™] gasifiers, respectively (16-30% reduction against Selexol[™])
- Cost of CO₂ capture is calculated as \$40 and \$28 per tonne for Shell and TRIG gasifiers, respectively (15-28% reduction against Selexol[™])

Sinopec Field Test Update

- Both skids and one of the containers were late to the site
- One skid held up due to the hazardous nature of the WGS catalyst and regulations on some of the power equipment
- Catalyst, transformer, fiber optic cable etc. were procured locally

Installation Work at Sinopec

- Because of the delays getting all equipment to site, the test setup had to be moved to a different location in the plant
- An existing super-structure at the new site added complexity to installation
 - Skids were pipe rolled over berm and into place
 - Vessels were loaded manually via socks and buckets

Carbon Bed Filling

- Stainless mesh screens and Denstone deltaP media are added to the beds (not available in NCCC tests)
 - The inert ceramic beads eliminated some of the dead volume in the reactor top and bottom
 - Heavy Denstone beads also limits material movement in the bed during cycling

Pilot Plant Installed at Sinopec

Early Results

- Testing started on 8/27/2019 at 21:50 MST
- High syngas flow, high T, low P during start-up to avoid water/tar condensation in the system
- 2500 SLPM Syngas Flow
- ~85% CO₂ removal efficiency
- ~110 kg/hr CO₂ removal rate

Bed Temperatures

 DeltaT of ~20-30°C was as predicted in the CFD simulations at GTI

Parametric Tests

- ~150 hours of testing with over 1,000 adsorption/desorption cycles were carried out using the same T cycle used at NCCC
 - ~86% CO₂ removal efficiency
 - ~110 kg/hr CO₂ removal rate (35 kg/hr CO₂ at NCCC)
- While a higher CO₂ adsorption capacity was observed than the evaluations at the NCCC, the removal efficiency were slightly lower than 90% due to the much higher amount of CO₂ that needed to be removed
 - A new cycle sequence was generated with shorter cycle time to switch the bed positions prior to CO₂ breakthrough, but not implemented

Summary of Test Results

flow rates (SLPM)			pressures (psia)			Syngas CO ₂ concentration.			
feed	steam	syngas product	CO ₂ and steam out	ads	des	bed T (°C)	Feed (%)	HP product (%)	CO ₂ removed
2,648	1,199	1,593	1,513	305	72	225	48	17	78%
2,752	253	2,060	481	298	59	249	37	17	65%
1,942	600	1,014	1,272	276	61	213	48	13	86%
1,983	1,200	1,486	1,262	298	61	192	45	11	83%
1,953	580	1,029	1,314	293	57	218	45	13	85%
2,174	892	1,185	1,273	304	36	214	47	14	84%
2,659	600	1,062	1,761	246	51	183	45	15	86%
859	129	556	128	134	79	288	46	15	78%

Parameters Varied:

- Syngas Flow = 1500 to 2800 SLPM
- Steam Flow = 200 to 1200 SLPM
- Bed Temperature = 190 to 290°C
- Adsorption Pressure = 130 to 300 psia
- Desorption Pressure = 35 to 80 psia

System Performance:

- 65-86% CO₂ removal efficiency
- Up to 122 kg/hr CO₂ removal rate
- 3X the CO₂ removal rate compared to our tests at NCCC

Sorbent Performance Summary

- Sorbent/PSA system maintained slightly higher CO₂ capacity than the earlier field tests at NCCC at ~60X scale
- At Sinopec we achieved a much higher capacity than in the previous oxyfired gasification tests at Wabash River IGCC power plant
- Total Pressure 340 vs 500 psia

Acknowledgements

- DOE/NETL funding under the DE-FE-0013105 project
- Project Manager, Andy O'Palko
- Chuck Shistla, GTI
- Ashok Rao, UCI
- Arvind Rajandran, UOA
- Frank Morton, NCCC

