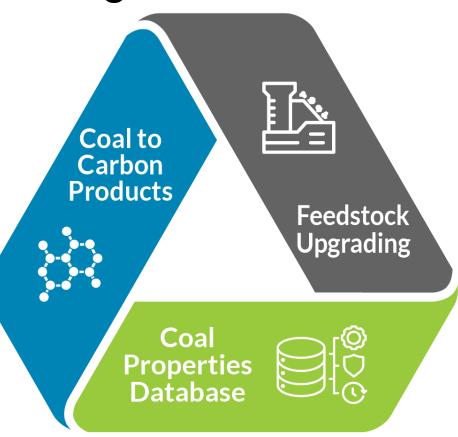
Advanced Coal Processing Program

Joseph Stoffa, PhD

Technology Manager

NETL's Advanced Coal Processing Program

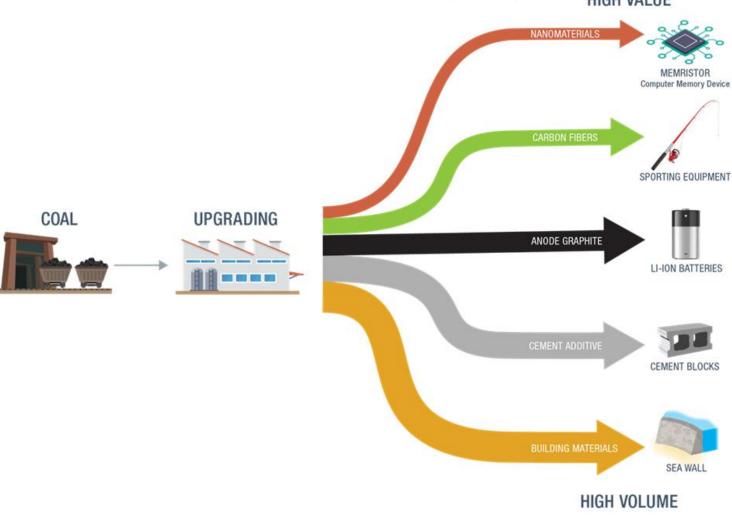

Program Initiated 2018

NATIONAL ENERGY TECHNOLOGY LABORATORY

Program Goals

- Enhance the value and applications of domestic coal
- Develop new high-value products derived from domestic coal
- Advance laboratory and pilotscale technologies
- Expand coal databases to inform domestic and global customers

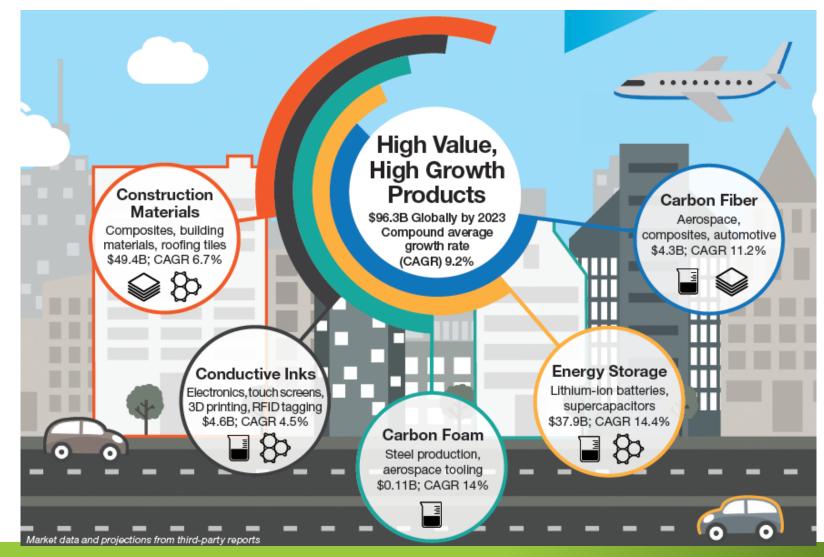
Program Focus Areas



Expanding the Coal Value Chain

NETL's Advanced Coal Processing Program

- Exciting opportunities to expand use of coal
- Advantages over other carbon-based feedstocks
 - Abundant and low cost
 - High-carbon density
 - Enables low cost, highvolume production of carbon materials
- Challenges
 - Optimizing product and process performance

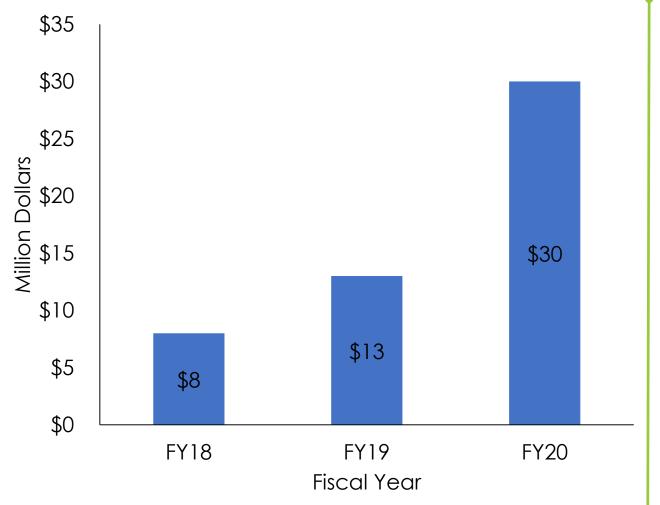


Product and Application Market Potential

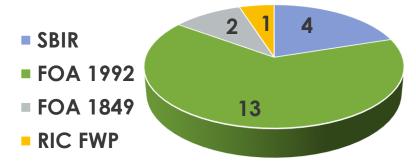
NATIONAL ENERGY TECHNOLOGY LABORATORY

Advanced Coal Processing Program

- Program is focusing on high-value and highgrowth products
- Current products and applications
 - \$96.3B global market value by 2023
 - CAGR of 9.2%
- Tremendous potential for domestic coal



Advanced Coal Processing Budget History


Program and Funding History

Funding Opportunity History

Funding Opportunity	Issue Date
SBIR-FOA-0001771: FY 2018 Phase 1 Release 2 High Value Products from Coal	11/29/2017
FOA-0001849: Novel Methods for Making Products from Carbon Dioxide or Coal	5/21/2018
SBIR-FOA-0001996: FY 2019 Phase 2 Release 2 High Value Products from Coal	12/20/2018
FOA-0001992: Maximizing the Coal Value Chain	3/4/2019
FOA-0002185: Coal-derived materials for building, infrastructure, and other applications	4/10/2020

Current Projects

Current R&D Portfolio

Three new projects added in January 2020 for FOA 1992

Feedstock Upgrading

CarbonFuels

Minerals Refining Co

Coal Properties

NETL RIC

Building Materials

Semplastics

Ohio U

Battelle Memorial Inst

NETL RIC

Conductive Inks

Minus 100

3-D Printable Polymers

H Quest Vanguard

Carbon Fibers

Ramaco Carbon

U. of KY Research Fdn

Ramaco Carbon

Oak Ridge National Lab

University of Utah

NETL RIC

Silicon Carbide Foam

Touchstone Research

Nanomaterials

University of Illinois

Rice U

Massachusetts Institute of Technology

NETL RIC

University of North Dakota

Electrodes

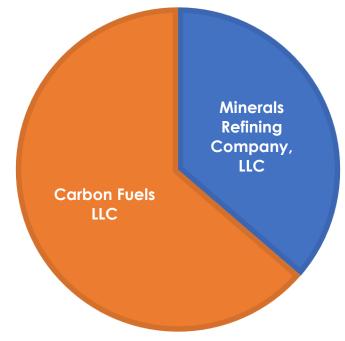
George Washington U

Physical Sciences

Semplastics EHC, LLC

Feedstock Upgrading

Pilot Plant Testing and Development



Carbon Fuels LLC

FOA: 1849 Feb. 2019 – Jan. 2022 Total Award Value: \$3,166,443

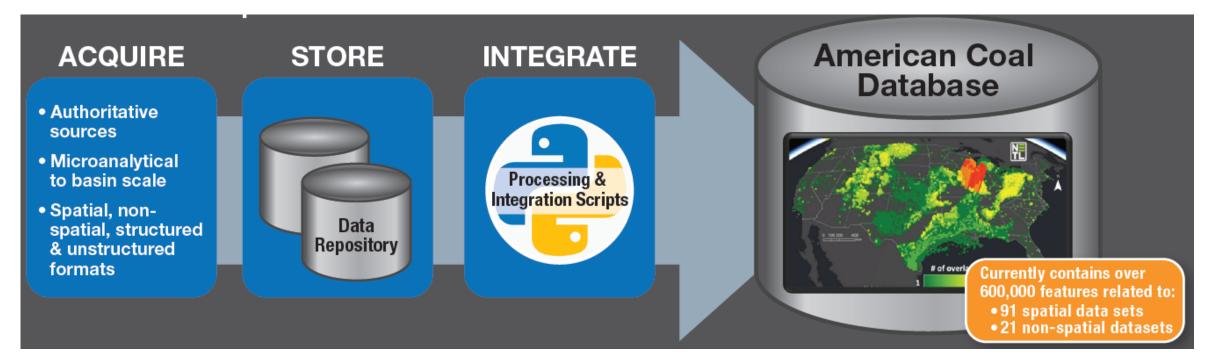
The Novel Charfuel Coal Refining Process 18 Tpd Pilot Plant Project for Co-Producing an Upgraded Coal Product and Commercially Valuable Co-Products

TOTAL AWARD VALUE ~\$4.97 MILLION

Minerals Refining Company, LLC

FOA: 1849 Feb. 2019 – Sept. 2021 Total Award Value: \$1,806,857

Pilot-Scale Testing of the Hydrophobic-Hydrophilic Separation Process to Produce Value-Added Products from Waste Coals



Coal Database

American Coal Database (ACD) and Virtual Beneficiation Platform (COAL DATA)

An Authoritative "Smart" American Coal Database & Virtual Beneficiation Platform to Optimize Coal Sources for Efficient and Effective End Uses

- Provides coal property, geochemical, and infrastructure data to coal producers and consumers
- https://edx.netl.doe.gov/geocube/

Coal to Building Materials

Revolutionizing Sustainable Building and Construction Materials

NATIONAL ENERGY TECHNOLOGY LABORATORY

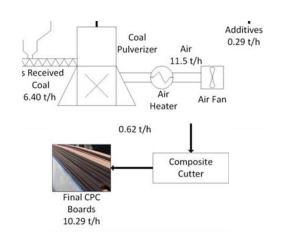
- High-volume and high-value products for coal
- Opportunities for coal
 - Increase product performance
 - Increase building energy-efficiency
 - Reduce product cost
- Products improved from coal include
 - Carbon foam, roofing tiles, siding, decking, insulation, joists/studs, sheathing, tiles and carpet, and block
- Focus of FOA 2185 released in 2020

Coal to Building Materials

Program Focus Area: Carbon Products

Semplastics

SBIR Grant Phase 1 – 2018 Phase 2 – 2019


Coal-core composite (CCC) for roofing tiles and other products

Ohio U

FOA: 1992 Awarded Sept. 2019

Coal plastic composite (CPC) for decking boards and other products

Battelle

FOA: 1992 Awarded Sept. 2019

Coal to polyurethane (PU) foam (solid) products

NETL - RIC

FWP-1022432 Initiated 2018

Coal-derived
graphene used as an
additive in ordinary
Portland cement

Coal to Carbon Fiber

Producing High-Performance Materials from Coal

- Carbon fibers are strong light-weight materials
- Carbon Precursors include Polyacrylonitrile (PAN), Rayon, and coal tar pitch
- Program supports developments to enhance carbon fiber properties and production
- High carbon content, lower cost of coal tar pitch enable lower cost production

Coal to Carbon Fibers

Program Focus Area: Carbon Products

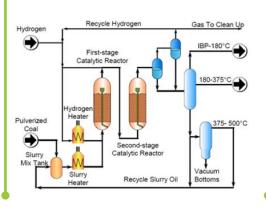
Ramaco Carbon

FOA: 1992 Awarded Sept. 2019

Raw coal feedstocks into pitch and carbon fibers

UKY

FOA: 1992 Awarded Sept. 2019


Melt spinning coalderived pitch into fiber

Ramaco Carbon

FOA: 1992 Awarded Sept. 2019

High-quality carbon fiber precursor material

ORNL and **UKY**

COAL MAT Research Topic

Coal-derived
Carbon Fiber for
Thermo-Structural
Applications

U. of Utah

FOA: 1992 Announced Jan. 2020

Isotropic and mesophase coal-tar pitch for carbon fiber production

Coal to Carbon Electrodes

Program Focus Area: Carbon Products

George Washington U

FOA: 1992 Awarded – Sept. 2019

High value (Li-ion grade) "potato" graphite

Physical Sciences

SBIR Grant Phase 1 – 2018 Phase 2 – 2019

High-conductivity carbon material (HCCM) for electrochemical applications

Stream Coal By-product 1 By-product 2 HCCM	1X 1X 3-10X 20-30X	PSI process produces a high conductivity carbon product for electrochemical applications with 20 -30X higher value than that of the coal used as fuel	Electrochemical applications
Coal -	Coal Pretreatme	Trocess +	High conductivity → carbon material (HCCM)

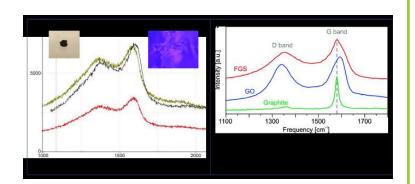
PSI's Innovative Process

Semplastics

FOA: 1992 Announced Jan. 2020

Composite material for use in lithium ion (Li-ion) battery anodes

Coal to Carbon Nanomaterials


Program Focus Area: Carbon Products

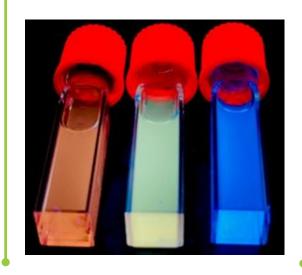
University of Illinois

FOA: 1992 Awarded – Sept. 2019

High-value carbon nanomaterials and carbon sorbents

Rice U

FOA: 1992 Awarded – Sept. 2019


High-quality graphene

NETL - RIC

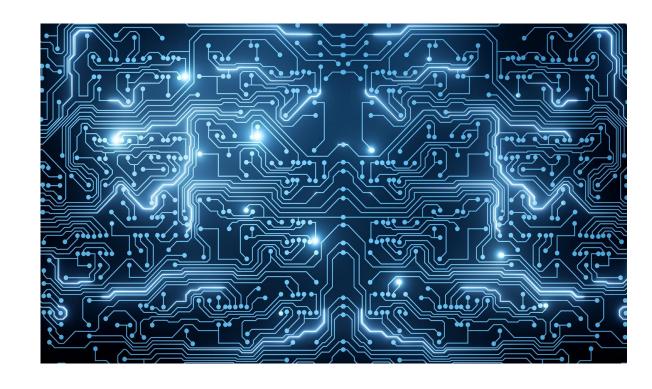
FWP-1022432 Initiated 2018

Coal-based Carbon
Nanomaterials

U. North Dakota

FOA: 1992 Announced Jan. 2020

Laboratory-Scale Coal-Derived Graphene



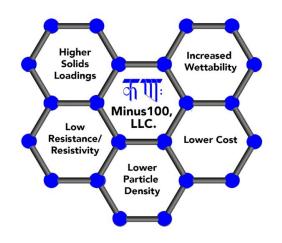
Coal to Conductive Inks

TL NATIONAL ENERGY TECHNOLOGY LABORATORY

Expanding Viable High-value, High-growth Markets for Coal

- Inks infused with conductive materials
- Enables printing of electrically conductive surfaces
- Facilitates production of flexible, stretchable, potentially self-healing electrical circuits
- Conductive carbon materials produced from domestic coal enables lower production costs

Conductive Inks, 3D Printable Polymers, SiC Foam

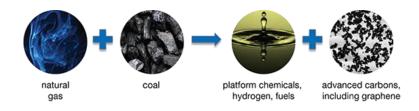

Program Focus Area: Carbon Products

Conductive Inks

Minus 100

SBIR Grant Phase 1 – 2018 Phase 2 – 2019

New methods of manufacturing highly conductive ink pigments



3-D Printable Polymers

H Quest Vanguard

FOA: 1992 Awarded – Sept. 2019

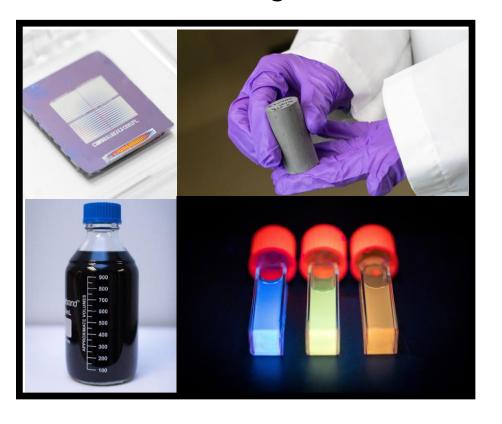
Carbon and graphitic materials for industrial electrode applications and advanced 3-D printable carbon polymer composites

Silicon Carbide Foam

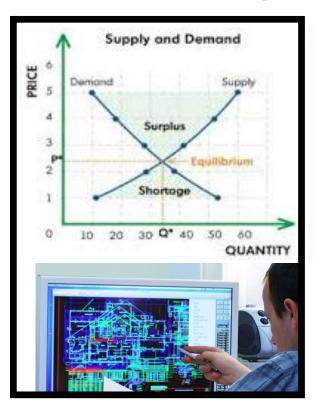
Touchstone Research Lab

SBIR Grant Phase 1 – 2018 Phase 2 – 2019

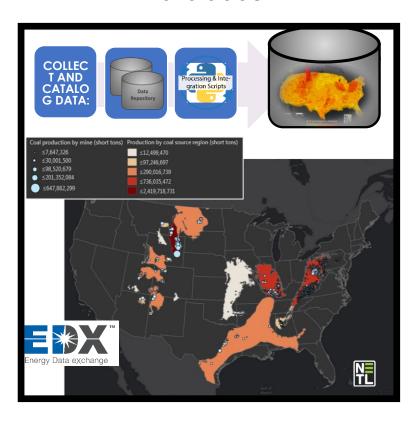
New silicon carbon (SiC) foam utilizing coal feedstock for s-CO₂ turbine operation



NETL-RIC's Coal to Products Research


NATIONAL ENERGY TECHNOLOGY LABORATORY

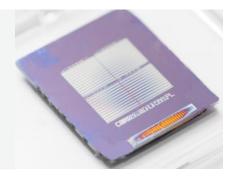
NETL's Research Innovation Center


Materials Discovery & Design

Market, Process, & Environmental Analysis

American Coal Database

Recent Accomplishments


NETL patent-pending technology converts coal into single-atom-thick carbon materials such as graphene

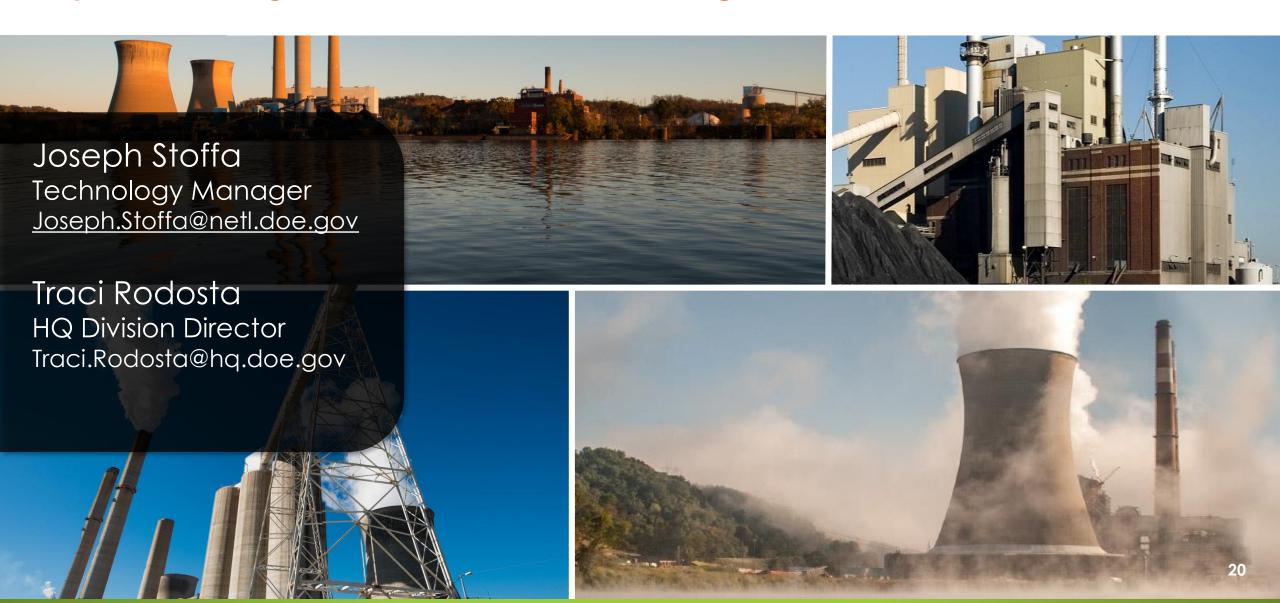
NETL coal-derived additive enables stronger and more durable cement at reduced cost

Coal-based nanomaterials manufactured at NETL are used to make computer memory devices

Takeaways

- Exciting opportunities exist to expand the coal value chain
- New program Initiated in 2018
- Lab scale through pilot-scale development

Stakeholder involvement essential for transition of technologies to industry



Contacts

https://netl.doe.gov/Advanced_Coal_Processing

