DOE/NETL Virtual Project Review 19-20 Oct 2020

Production of High Value Products from Coal

U.S. Coal to Conductive Inks

DOE Grant DE-SC0018694

DOE/NETL Virtual Project Review Meeting 19-20 Oct 2020

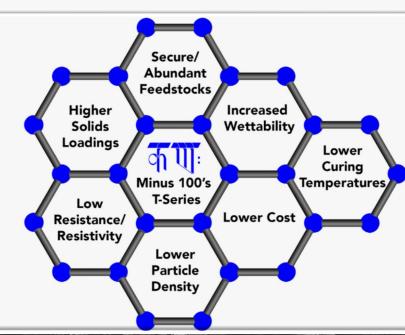
Investigators: James Hnat, PhD (PI) & Kevin Kerns, President (PM)

Contact Information

E-mail: jghnat@minus100.com, Tel:610-331-1772

E-mail: kckerns@minus100.com, Tel: 570-212-3261

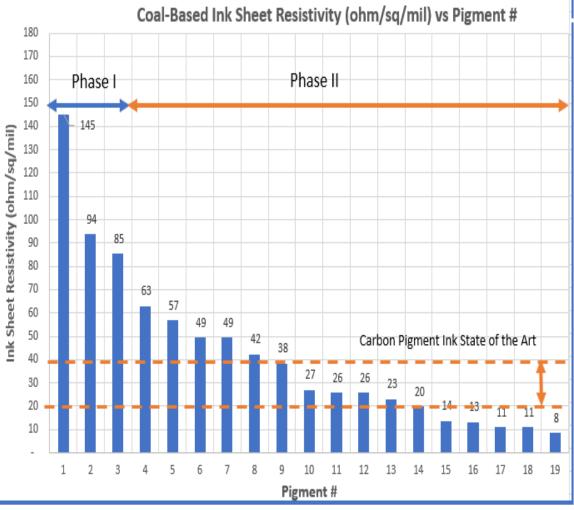
Project Purpose/Objectives



Fossil Energy/Minus 100, LLC Objectives

Fossil Energy Objective

 Increase use of U.S. coal utilization through the development of technologies and valueadded products that use U.S. Coal Supplies as a primary feedstock


- Conductive Inks
 - Current Market (~ \$ 3.0 B/yr) Growing at 4-8% CAGR
 - Conductivity Enhancement Methods Under Evaluation
 - Lower Resistivity Leads to Electronic Printing Market Expansion
- Conductive Paints & Coatings
 - Significantly Larger Market (~ \$ 17.5 B/yr) Growing at 6.8% CAGR
 - Application Methods are Simpler
- Synthetic Graphite Manufacturing
 - Significantly Larger Market (~ \$ 17.4 B/yr) Growing at 5.2% CAGR
 - Precursor to Various Carbon Allotropes
 - Graphene, Carbon Nanotubes
 - Strategic Material with Limited U.S. Manufacturing Capacity
- Underfloor Heating Market
 - (~\$6 B/yr) Growing at 4.5% CAGR

Technical & Commercialization Accomplishments

Technical Accomplishments/Activities

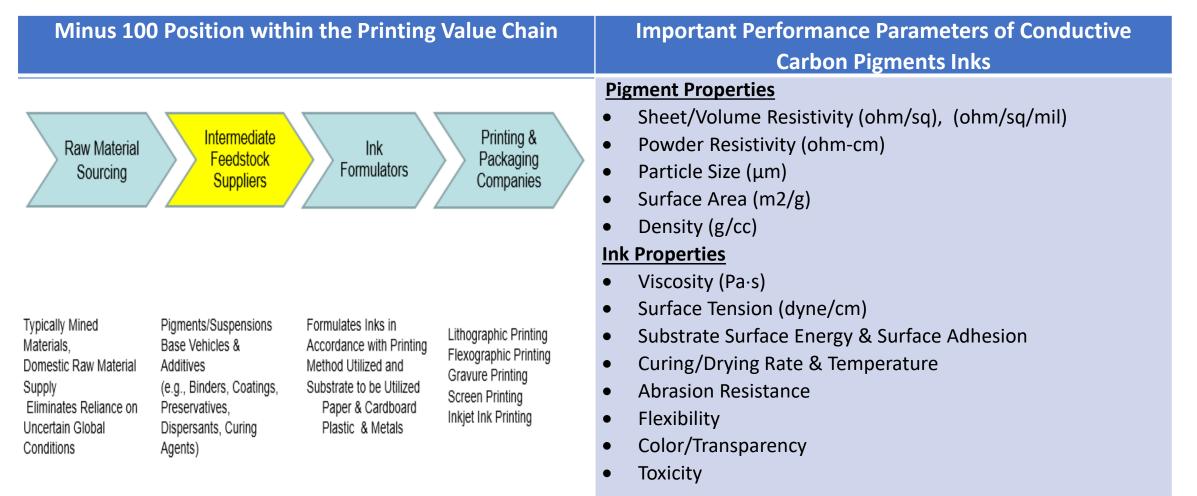
Commercialization Activities

- Accomplished Phase II Objective of ≤ 100 ohm/sq/mil
- Major Ink Manufacturers are Evaluating Coal-Based Pigment & Ink Suspensions for Conductive Ink Applications
- Working Toward Qualification of our Pigments/Suspensions for Specific Commercial Applications
- Testing of Lab-scale Proto-type Heating Element Assemblies
- Working with Screen Printers to Scale-up Heating Element Assembly Designs
- Developing Lower Resistivity Pigments/Suspensions to Expand the Application Scope of our Coal-Based Pigments/Suspensions

Carbon-Based Conductive Ink Applications

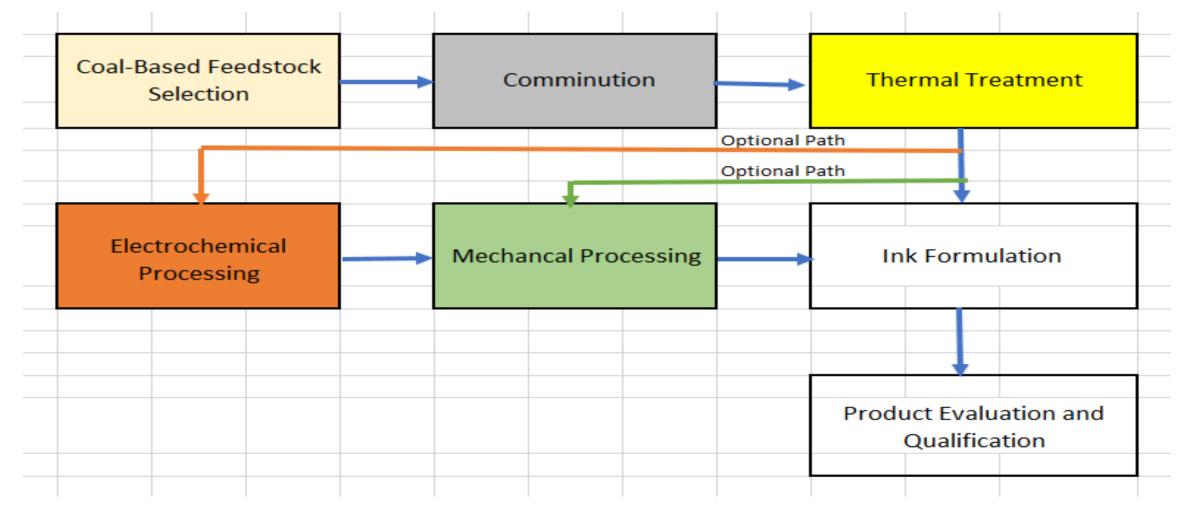
Henkel Web Page

Sheet Resistivity (ohm/sq/mil)	Printing Method	Potential Application
1,000,000 ± 15%	Screen-printing, thermoset, rigid carbon ink, blending for specific resistance targets	Printed resistors, heaters, potentiometers, friction
100,000 ± 15%	Screen-printing, thermoset, rigid carbon ink, blending for specific resistance targets	Printed resistors, heaters, potentiometers, friction
10,000 ± 15%	Screen-printing, thermoset, rigid carbon ink, blending for specific resistance targets	Printed resistors, heaters, potentiometers, friction
1,000 ± 15%	Screen-printing, thermoset, rigid carbon ink, blending for specific resistance targets	Printed resistors, heaters, potentiometers, friction
100 ± 15%	Screen-printing, thermoset, rigid carbon ink, blending for specific resistance targets	Printed resistors, heaters, potentiometers. friction
< 40	Flexographic, Gravure, Screen, Digital	Printed resistors, heaters, potentiometers, friction
1	Flexographic, Gravure, Screen, Digital	RFID Applications



Position of Minus 100 in the Printing Value Chain

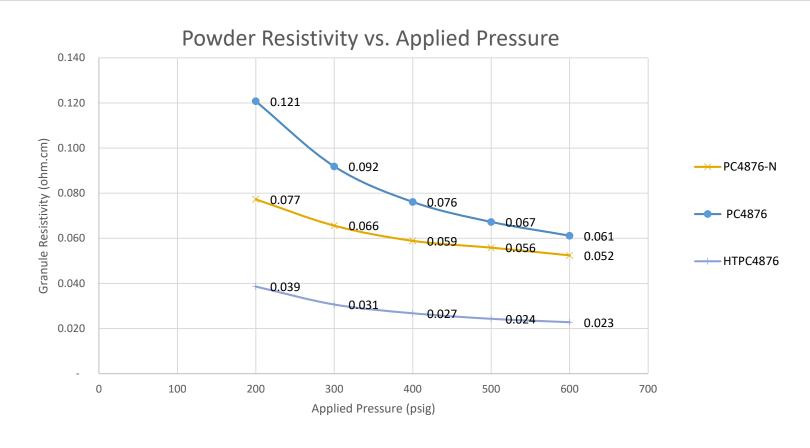
Position within the Printing Value Chain & Important Pigment/Ink Parameters



Technical Approach

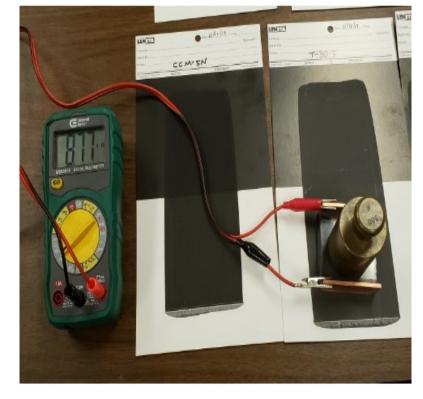
Proprietary Thermal Treatment

Heat Treated Coal-Based Product


- Elevated temperatures enhance the electrical conductivity of coal-based feedstocks.
- Minus 100, LLC has developed a novel high temperature process for converting coalbased feedstocks into electrically conductive materials.
- This process is suitable for the production of synthetic graphite, a strategic material, from coal-based feedstocks
- Patent application restrictions preclude disclosure of details.

Enhanced Conductivity of Bituminous Feedstocks via Thermal Treatment

ATIONAL

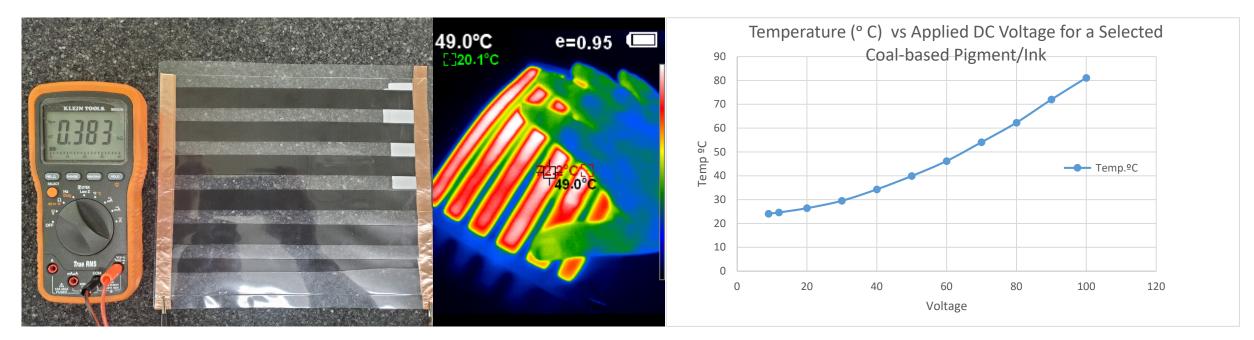

TECHNOLOGY LABORATORY

Ink Resistivity Measurements

Draw Down with a Mayer Rod

Measurement of Square Resistance

Measurement of Ink Film Thickness

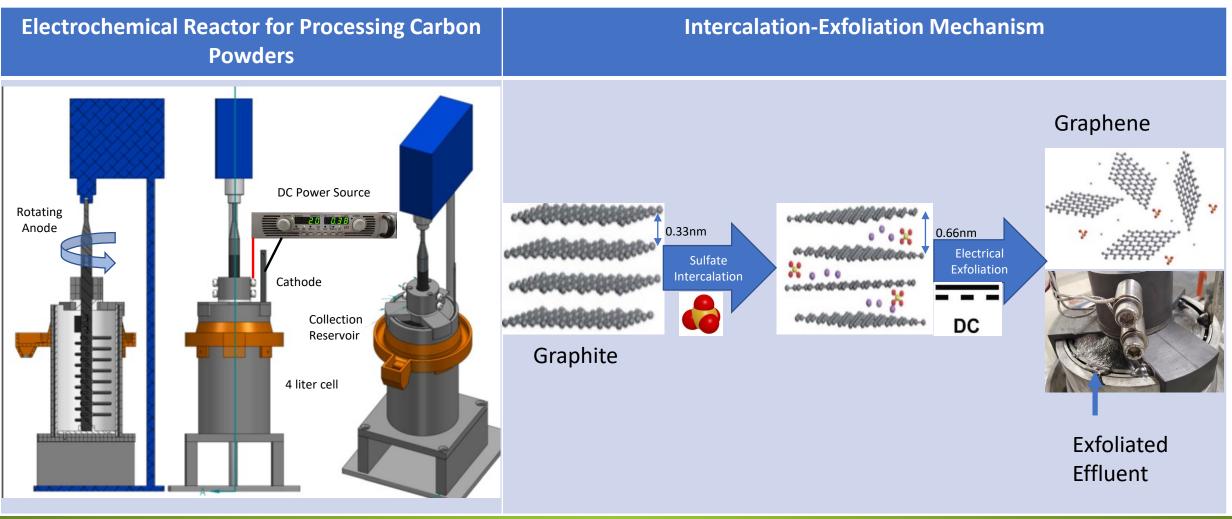


Lab-Scale Resistive Heating Element Testing Underway

Coal-Based Heating Element Assembly Test Arrangement

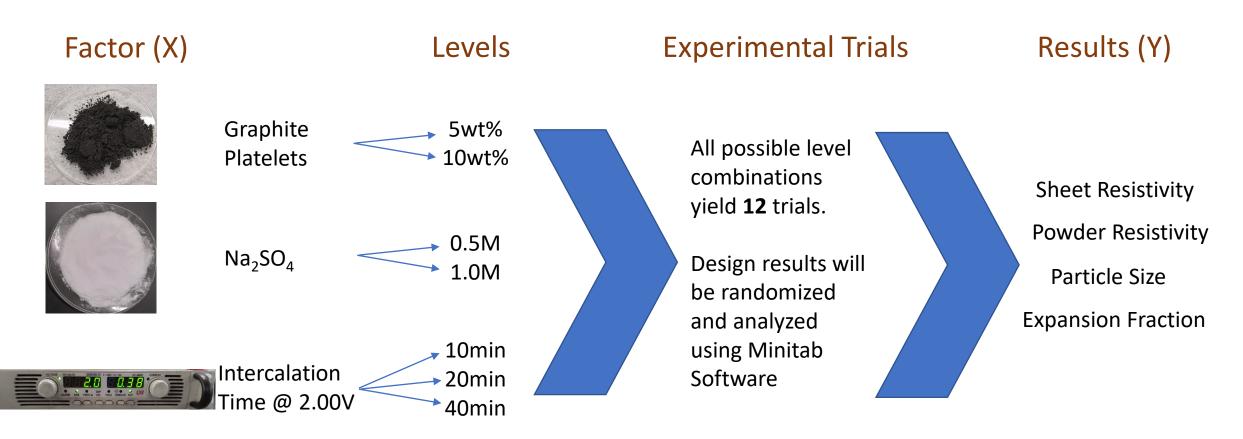
Lab Scale Under Floor Heating Element Assembly Thermographic Image of Lab-Scale Heating Assembly

Thermoprofile of Lab-Scale Heating Element Assembly



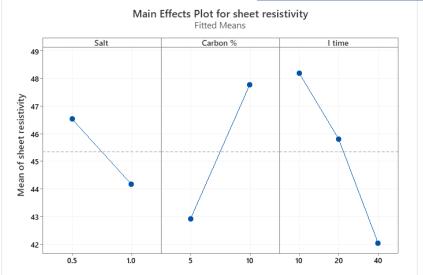
Carbon Additive Enhancement of Coal-Based Pigments

Description of Electro-chemical Reactor Assembly



Additive Enhancement for Coal-Based Pigments

Experimental Design (DOE) for the Production of Graphite/Graphene Platelets



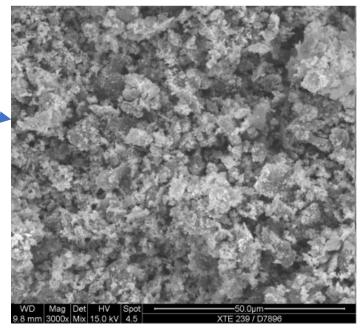
Additive Enhancement for Coal-Based Pigments

Preliminary Analysis for Electrochemical Reactor DOE

StdOrder	RunOrder	PtType	Blocks	Salt	Carbon %	l time	sheet resistivity
10	1	1	1	1	10	10	51.95
11	2	1	1	1	10	20	50.76
5	3	1	1	0.5	10	20	43.89
3	4	1	1	0.5	5	40	46.65
8	5	1	1	1	5	20	42.29
6	6	1	1	0.5	10	40	43.91
12	7	1	1	1	10	40	41.01
1	8	1	1	0.5	5	10	43.28
2	9	1	1	0.5	5	20	46.29
7	10	1	1	1	5	10	42.42
4	11	1	1	0.5	10	10	55.13
9	12	1	1	1	5	40	36.6

- Residual Carbon Fraction Analysis
- Main Effects Carbon Fraction Analysis
 - Lower carbon% = lower sheet resistivity
 - Higher intercalation time = lower sheet resistivity
 - Higher salt concentration = lower sheet resistivity
- Effluent Carbon Fraction Analysis in process with target date 10/31/2020.

Additive Enhancement for Coal-Based Pigments


Metallization of Coal-Based Pigments via Electroless Nickel Plating

Property / Level of alloy	High ^a	Mid ^a	Mid-Low ^a	Low ^a	
% Phosphorous	10 - 13	7 - 9	4 - 6	1 - 3	
Electrical resistivity ^h	75 - 110	40 - 70	15 - 45	10 - 30	uOHM-

 $2\text{Ni}^{2+} + 8\text{H}_2\text{PO}_2^- + 2\text{H}_2\text{O} \rightarrow 2\text{Ni}_0\text{ (s)} + 6\text{H}_2\text{PO}_3^- + 2\text{H}^+ + 2\text{P (s)} + 3\text{H}_2\text{ (g)}$

- <u>Stage I</u>
 - 5µm coal based conductive particles were successfully coated with nickel alloy.
- Lowers overall weight and cost compared to silver.
- <u>Stage II</u>
- NiP alloy coating with targeted resistivity 15- 45 $\mu ohm\mbox{-}cm$ range

NATIONAL

TECHNOLOGY

SWOT Analysis

NATIONAL ERGY **TECHNOLOGY** ABORATORY

Challenges

 Strengths Phase I Goal: < 1000 ohm/sq/mil - Achieved Phase II Goal: < 100 ohm/sq/mil - Achieved Internal Goal: < 10 ohm/sq/mil – Achieved 8 ohm/sq/mil Next Target: ≤ 1 ohm/sq/mil – In Progress Lab-Scale heating element prototype developed Development of novel high temperature process for conductive/graphitic enhancement Use of nontoxic electrolytes in ECR 	 Challenges Achieve ≤ 1 ohm/sq/mil with metallized pigment. HT Furnace construction materials Flue Gas Emissions Material handling of fine particles
O pportunities	Threats
 Socking underfloor beating commercialization partner 	 Covid-19 Fallout (supply and co-development)
 Seeking underfloor heating commercialization partner 	
 Seeking undernoor neating commercialization partner New electronic circuit printing 	 Demand destruction
New electronic circuit printing	
 New electronic circuit printing Collaborating with major ink manufacturers 	

Future Plans

- 1. Underfloor Heating Element Applications
 - Pursuing co-development commercial screen-printing partners to produce a protype.
- 2. Electro-Chemical Research
 - Complete Design of Experiment analysis to target optimum ECR conditions.
 - Evaluate intercalation/exfoliation potential of selected coal-based pigments with optimum ECR conditions
- 3. Hybrid Pigment Conductive Research
 - Complete carbon-based additive research
 - Conductive Carbon Black
 - Graphite/Graphene Platelets
 - Carbon Nanotubes
 - Metallization
- 4. Continue collaboration with major ink formulators to evaluate Minus 100, LLC conductive pigments.
- 5. Initiate lab-scale testing and evaluation of proprietary heating technology at elevated temperatures
- 6. Continue commercialization efforts with Tech-Opps.

Questions & Answers

