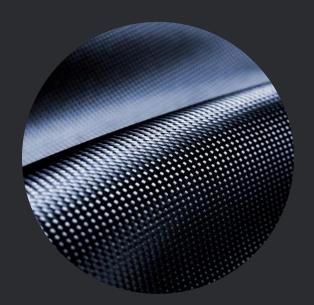

Carbon Fiber Precursor Pitch from Low-Cost Powder River Basin Coal

By Charles Hill and Chris Yurchick — Co-Pls @ Ramaco Carbon

Prepared for the 2020 NETL Annual Coal Processing Project Review Meeting

Who We Are


Ramaco Coal, founded in 2011, is a coal-based conglomerate with operations in five states. It consists of two main operating companies:

Ramaco Resources

A publicly traded met coal producer (METC-Nasdaq) with low cost, high quality production in West Virginia, Virginia and Pennsylvania.

Headquartered in Lexington, Kentucky.

Ramaco Carbon

The first vertically integrated resource, research and manufacturing coal technology platform focused on creating "Coal to Products".

Headquartered in Sheridan, Wyoming.

www.ramacoresources.com

www.ramacocarbon.com

Carbon Fiber Precursor Pitch From PRB Coal

Evaluating Two Processes: May Use Either or Both Commercially to Generate CF Precursor Pitch

MUSCL Multi-Ultra Supercritical Coal Liquefaction

- Brand New Process Never Attempted Before
- Closed Loop System > No Emissions
- Lower Cost > No Hydrogen Required
- Selective Extractions > Ideal for Upgrading to Mesophase

LSDCL Low-Severity Direct Coal Liquefaction

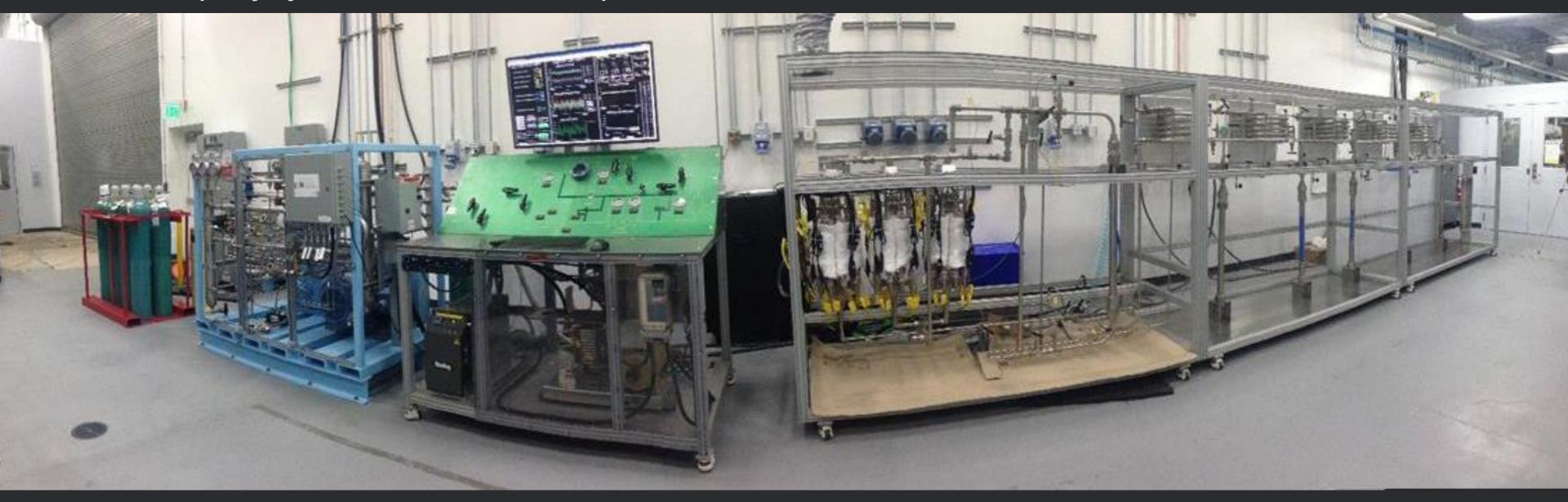
- 50-years of Experience with Similar H-Coal Process
- Less Severe Conditions Than Traditional DCL (Much Lower Cost)
 - Lower Temperatures
 - Lower Pressures
 - No Catalyst Required

ocess (Much Lower Cost)

Two Funding Awards: Carbon Fiber Precursor Pitch Extraction Process Development

Coal to Carbon Fiber – Novel Supercritical CO2 Solvated Process (MUSCL) DE-FE-0031800

Experimental Validation & Continuous Testing of an On-Purpose High-Yield Pitch Synthesis Process for Producing Carbon Fiber from Coal (LSDCL) DE-FE-00310801

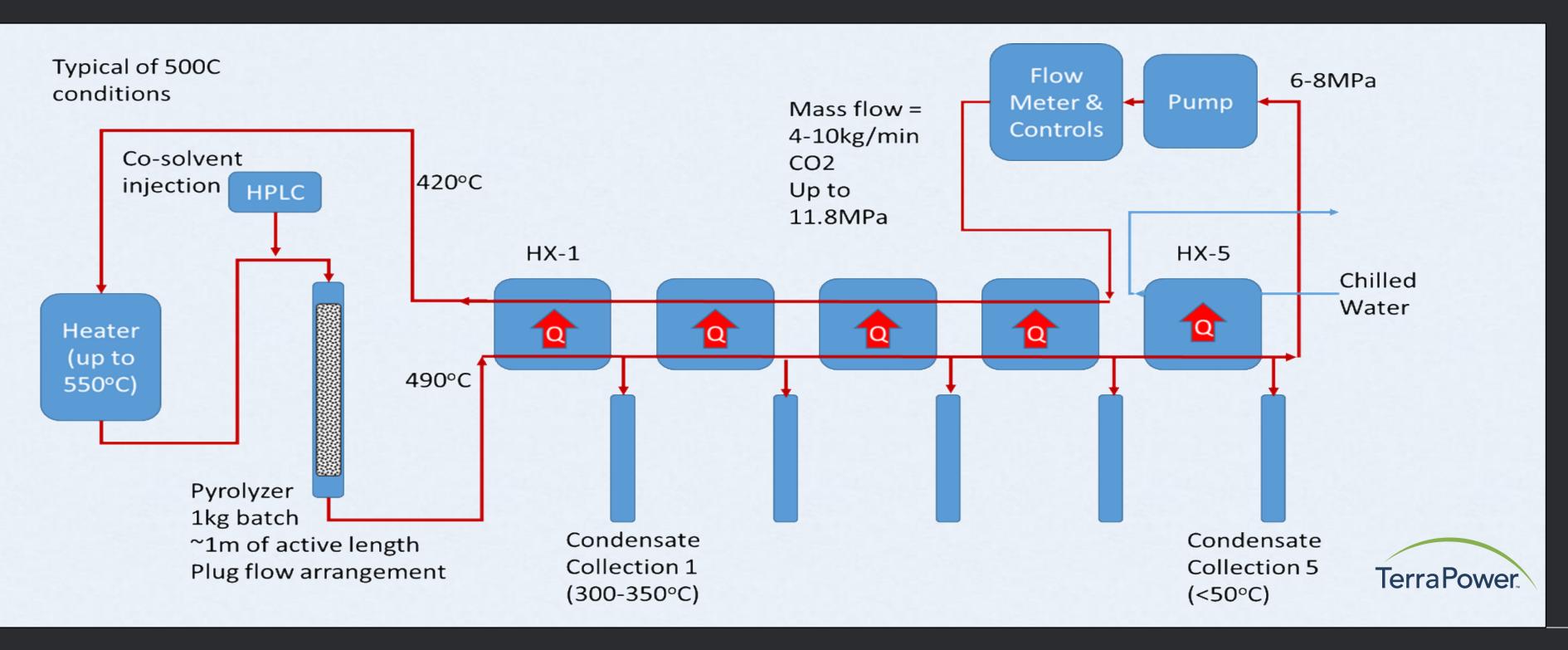

DOE Funding: \$733,299 Cost Share: \$323,500 Total Value: \$1,056,799

Budget Period 1: 1-14 months Budget Period 2: 2-10 months

> DOE Funding: \$883,365 Cost Share: \$220,842 Total Value: \$1,104,207

Budget Period 1: 1-12 months Budget Period 2: 2-12 months

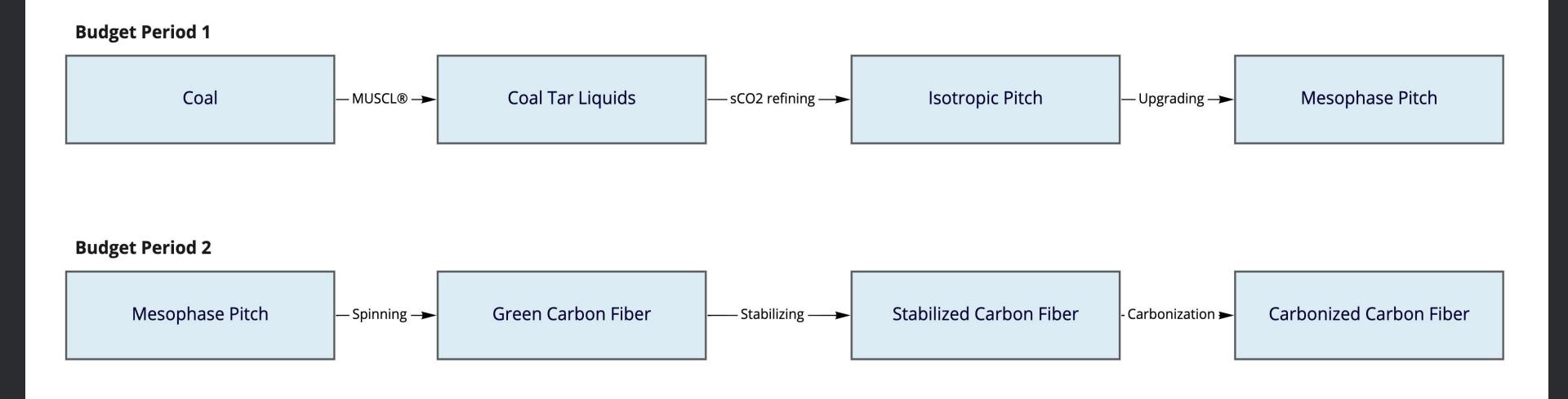
- Develop a vertically integrated continuous manufacturing process.
- Transform raw coal feedstocks into pitch and carbon fibers.
- Closed-system approach to processing environmentally hazardous intermediates like polycyclic aromatic compounds.



Pyrolysis Test Loop — MUSCL®

- TerraPower's pyrolysis test loop utilizes supercritical CO₂ in a closed loop.
- CO₂ is heated up to 550°C, and acts as the heating fluid for the feedstock to reach pyrolysis temperatures and serves as a pyrolysis product solvent.
- Kg batches of feedstock can be processed for testing various feedstock.
- Pyrolysis energy recovered using efficient 'reverse' distillation process.

Pyrolysis Product Sample is Recovered in Condensate Collection 2 and 3- "MuSCL oil"



Carbon Fiber Precursor Pitch from Low-Cost Powder River Basin Coal

CO₂ in a closed loop. and for the feedstock to reach uct solvent. various feedstock. stillation process.

Pyrolysis Test Loop — MUSCL®

Main technical focus area is on the supercritical CO₂ processing steps.

- MUSCL[®] derived from established super critical extraction process technologies.
- Produces **on-purpose isotropic pitch** and valuable co-products.
- The other **non-sCO₂** processing steps are to be practiced mainly by conventional means.

traction process technologies. e co-products. cticed mainly by conventional

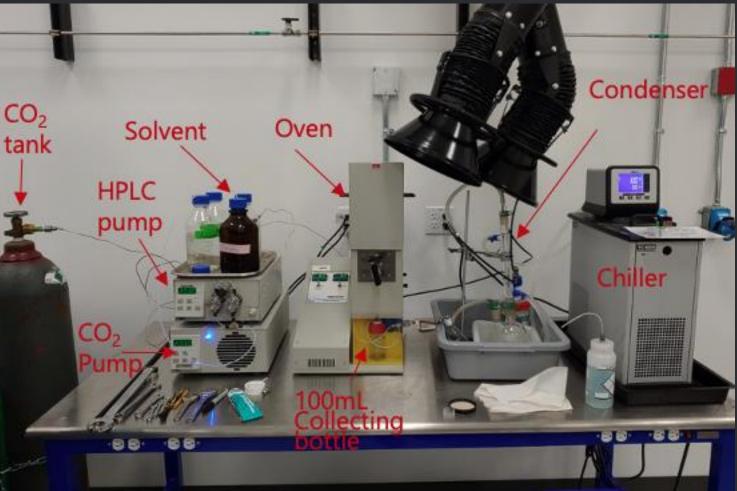
Current Progress: MUSCL[®] process successfully produced pyrolysis oils using the following system conditions.

Systems	Heater Output/Pyrolyzer Input	HX-1 to HX-4 Temperature Range	HX-5 Out (ES)	CO ₂ Mass Flow	Pump Outlet Pressure		
Target Values	450-500 °C	<450°C to >35 °C	<35 °C	5-10 kg/min	8-11 MPa		
Achieved Values	485 °C	485 °C to 15 °C	15 °C	5 kg/min	6-11.5 MPa		

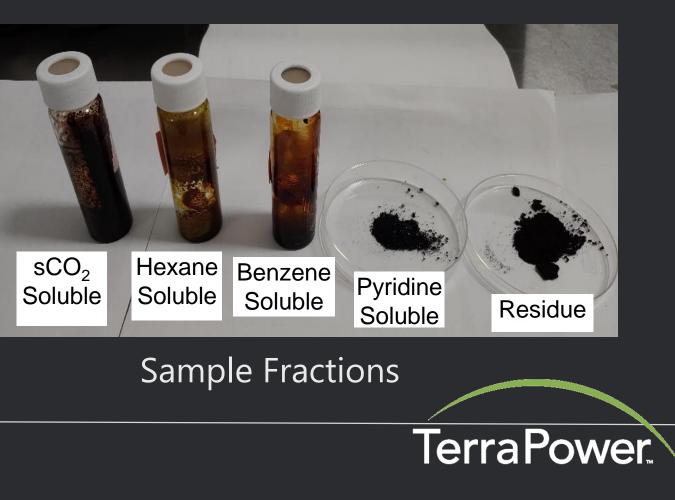
<u>Supercritical CO₂ separation of MuSCL-oil with</u> sequential co-solvents

- Sample: MuSCL oil produced in July 16, 2020
- Extraction method:
 - SCO₂ extraction at 50 80 °C and 20 30 MPa
 - Sample loading: SCO₂ (17 g), Soxhlet (10 g)
- Solvent: Benzene and Pyridine

MuSCL samples

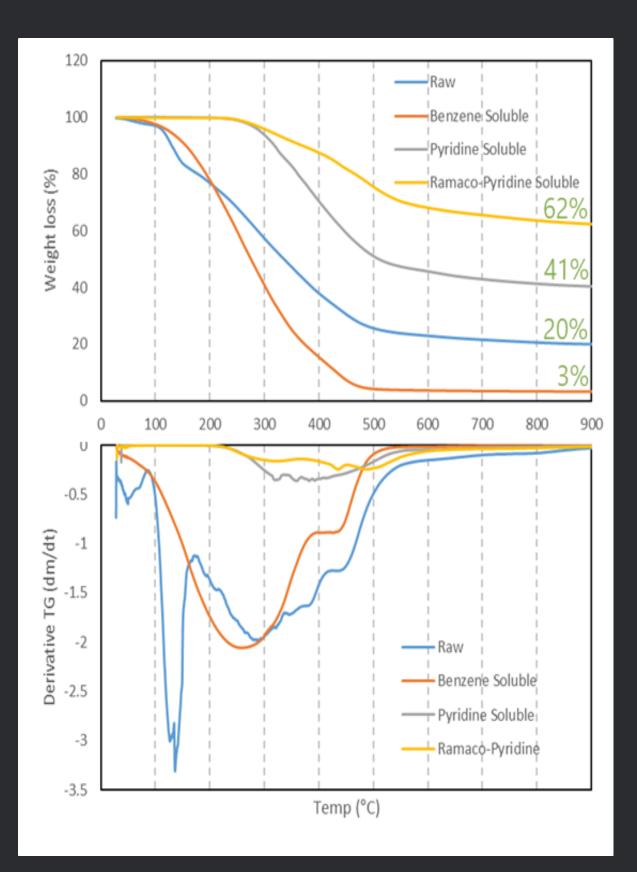

0716-2020

0814-2020



Carbon Fiber Precursor Pitch from Low-Cost Powder River Basin Coal

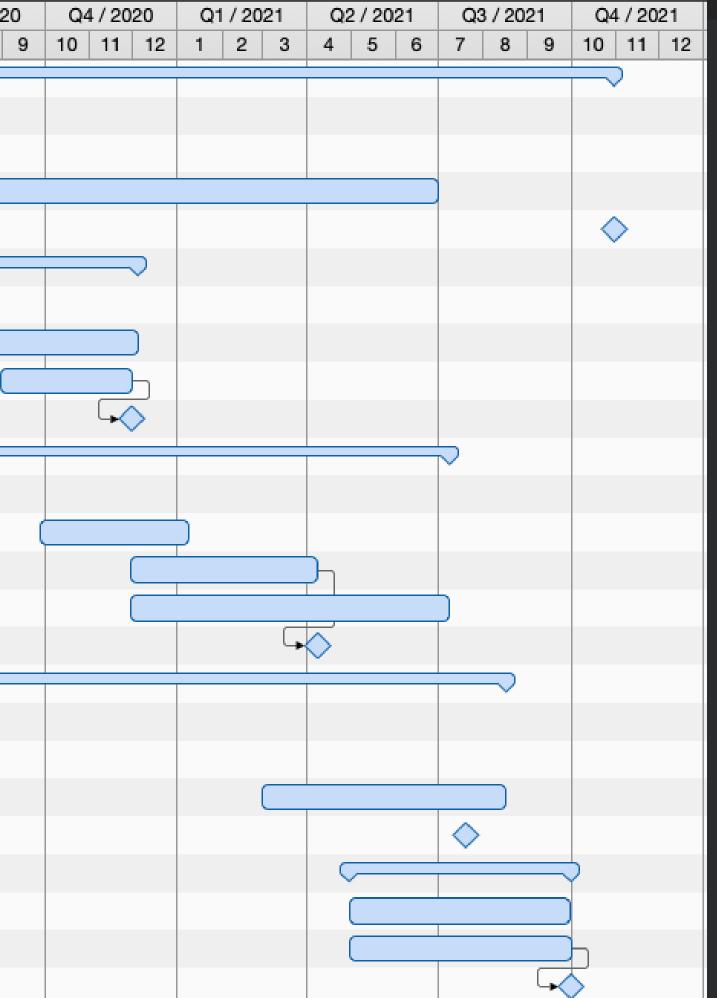
sCO₂ extraction system

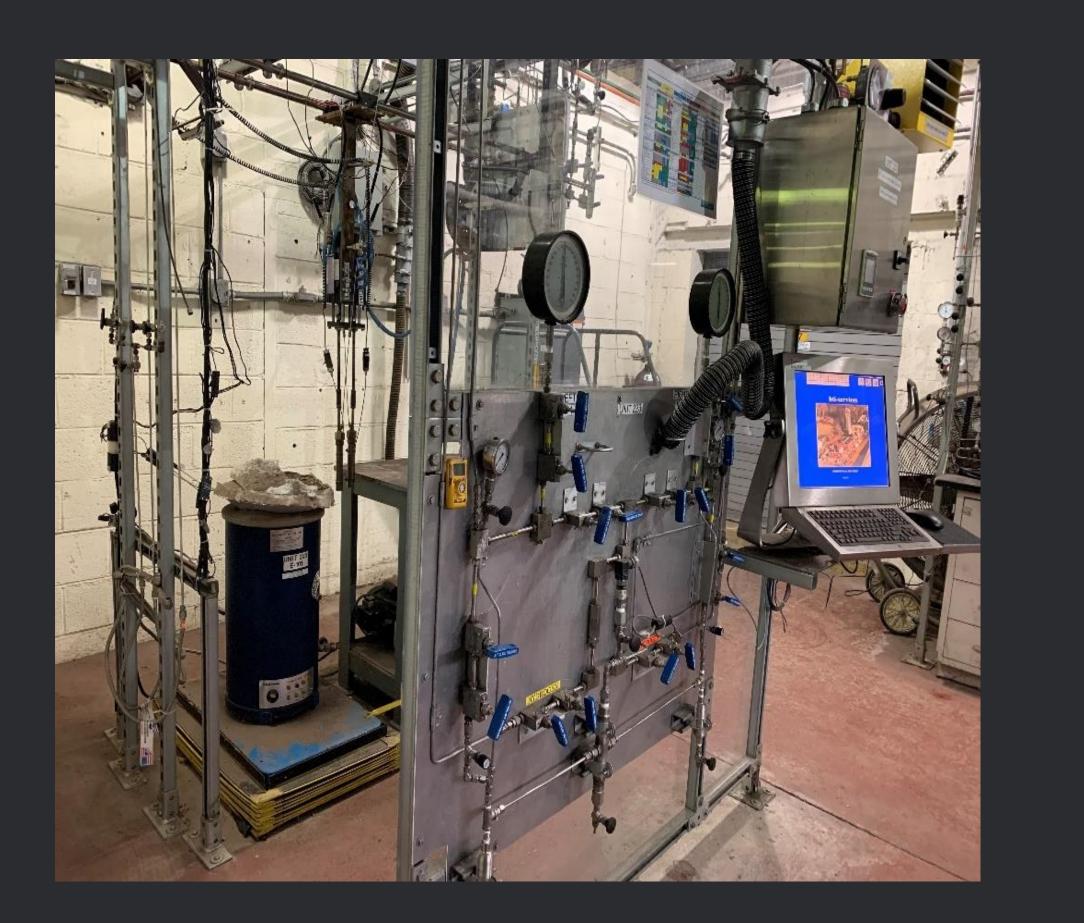

Supercritical CO₂ separation of MuSCL-oil with sequential co-solvents

Carbon yield at 900 °C

- MuSCL sample: 41%
- Ramaco sample: 62%
- Decomposition temperature
 - Ramaco samples: offset 590 °C
 - MuSCL sample: offset 540 °C

	Soxhlet extraction	sCO2 extraction
Sample	MuSCL (July 16, 20)	MuSCL (July 16, 20)
Loaded amount (g)	11 g	17 g
Benzene soluble fraction (%)	49%	52%
Pyridine soluble fraction (%)	13%	12%
Residue (%)	25%	26%
Mass loss (%)	13%	10%





Coal to Carbon Fiber - Novel Supercritical CO2 Solvated Process	Q	Q4	4 / 20	19	Q	1 / 20	20	Qź	2 / 20	20	Q3	3/20	02
	9	10	11	12	1	2	3	4	5	6	7	8	
Task 1 Project Management		_											_
Finalize Teaming Agreement between Ramaco and Sub-Recipien	t												
Update Project Management Plan		<	\geq										
Quarterly Reports								I					
Final Report													
Task 2 Generation of Pyrolysis Coal Tar Pitch		_											_
Subtask 2.1 Pyrolysis System Set-up													
Subtask 2.2 Pyrolysis System Operation							Ċ	•					
Subtask 2.3 Coal Tar Pitch Analysis													(
Milestone 2 Completion of Pyrolysis Pitch Analysis													
Task 3 sCO2/Co-Solvent Fractionization Pyrolysis Pitch													_
Subtask 3.1 Solvent Fractionization Testing Preparation		\square											
Subtask 3.2 Performance of Supercritical Solvent Fractionization	я												
Subtask 3.3 Analysis of Fractionated Coal Pitch Samples													
Subtask 3.4 Sample Heat Treatment													
Milestone 3 Completion of Solvent Fractionization													
Task 4 Carbon Fiber Formation Testing		_											
Subtask 4.1 Carbon Fiber Spinning Preparations													
Subtask 4.2 Set-up of Mesophase to Fiber Forming Equipment													
Subtask 4.3 Carbon Fiber Formation Testing													
Milestone 4 Complete Carbon Fiber Formation Testing													
Task 5 Commercial Feasibility Assessment													
Subtask 5.1 Determination of Pyrolysis to Fiber Process Yields													
Subtask 5.2 Integrated System Capital Cost Estimation													
Milestone 5 Completion of Feasibility Assessment													

COVID-19 Impacts March-May 2020, Project Recovered

Develop a process to create highquality carbon fiber precursor material from U.S. coal using **lowseverity direct coal liquefaction (LS-DCL)** techniques in the synthesis of coal tar pitch.

•

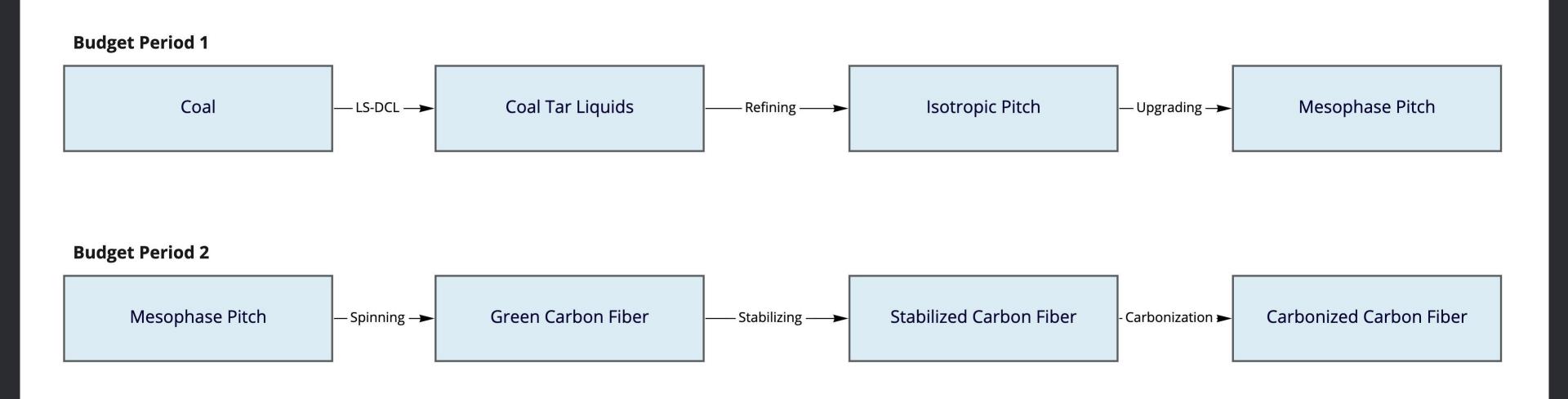
 Project could lead to cost reductions to take advantage of a secure, plentiful domestic coal feedstock, and may significantly expand the market for pitch-based carbon fiber.

Direct Coal Liquefaction Technology – HTI H-Coal[®] Development History:


• Same development path/pilot units as H-Oil®.

• Pilot plant development started in 1960's.

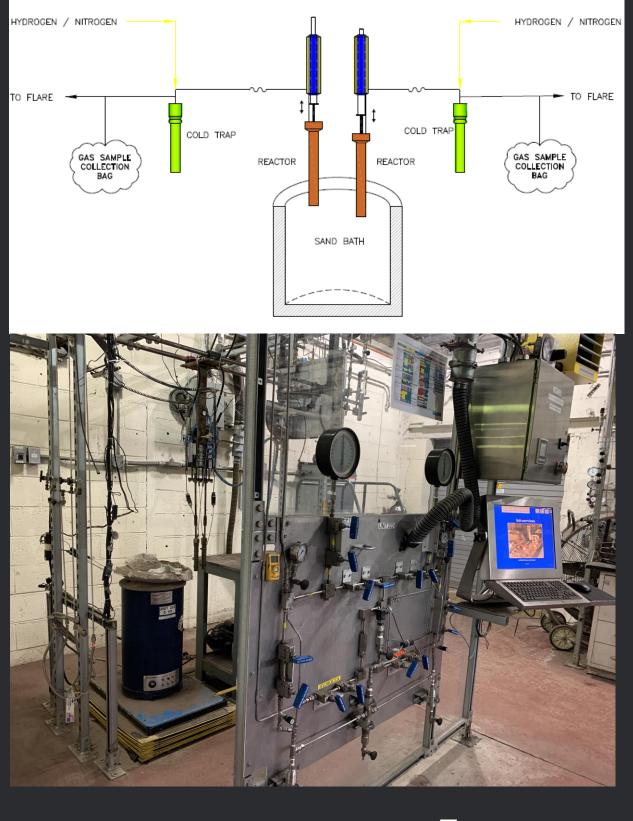
• DOE-supported scale-up to demonstration scale (200 TPD) in 1980s. This Catlettsburg, KY facility is pictured on the right.


 License/Basic engineering design and provided start-up support for Shenhua Direct Coal Liquefaction Plant, a successful start-up in 2008.

- Main technical focus area is on the **LS-DCL step**
- LS-DCL is derived from long established process technologies, H-CoalTM/H-OilTM, originally commercialized for liquid transportations fuels
- LS-DCL constitutes an incremental, lower severity, change in process conditions to produce **on-purpose isotropic pitch** and valuable co-products
- Other processing steps are to be practiced by conventional means

Project Objectives & Success Criteria

- 1. Demonstrate that coal tar pitch-based isotropic pitch can be made in **high yield** >35% in a low severity DCL process.
- 2. Illustrate techno-economic viability of producing **mesophase pitch at \$1.50/lb.**
- 3. Validate that the resulting **mesophase** pitch is a suitable carbon fiber precursor, satisfying the most basic physical property criteria, such as:
 - Softening point (300°C –375°C).
 - Sufficiently high %mesophase content (35% -90%). •
 - Sufficiently low QI content.
 - Ability to spin continuous monofilament fiber.



Micro-autoclave (Unit 223) Coal Reactivity Testing To Determine Conditions for Pilot Operations

Unit 223 has side-by-side reactors to allow parallel testing. The reactors were charged with coal (4 g) and solvent (16 g) and were threaded onto the shaker arm assembly. The reactors were pressurized to the desired test pressure with hydrogen, nitrogen, or other gas via 3-mm tubing that was welded into the reactor cap.

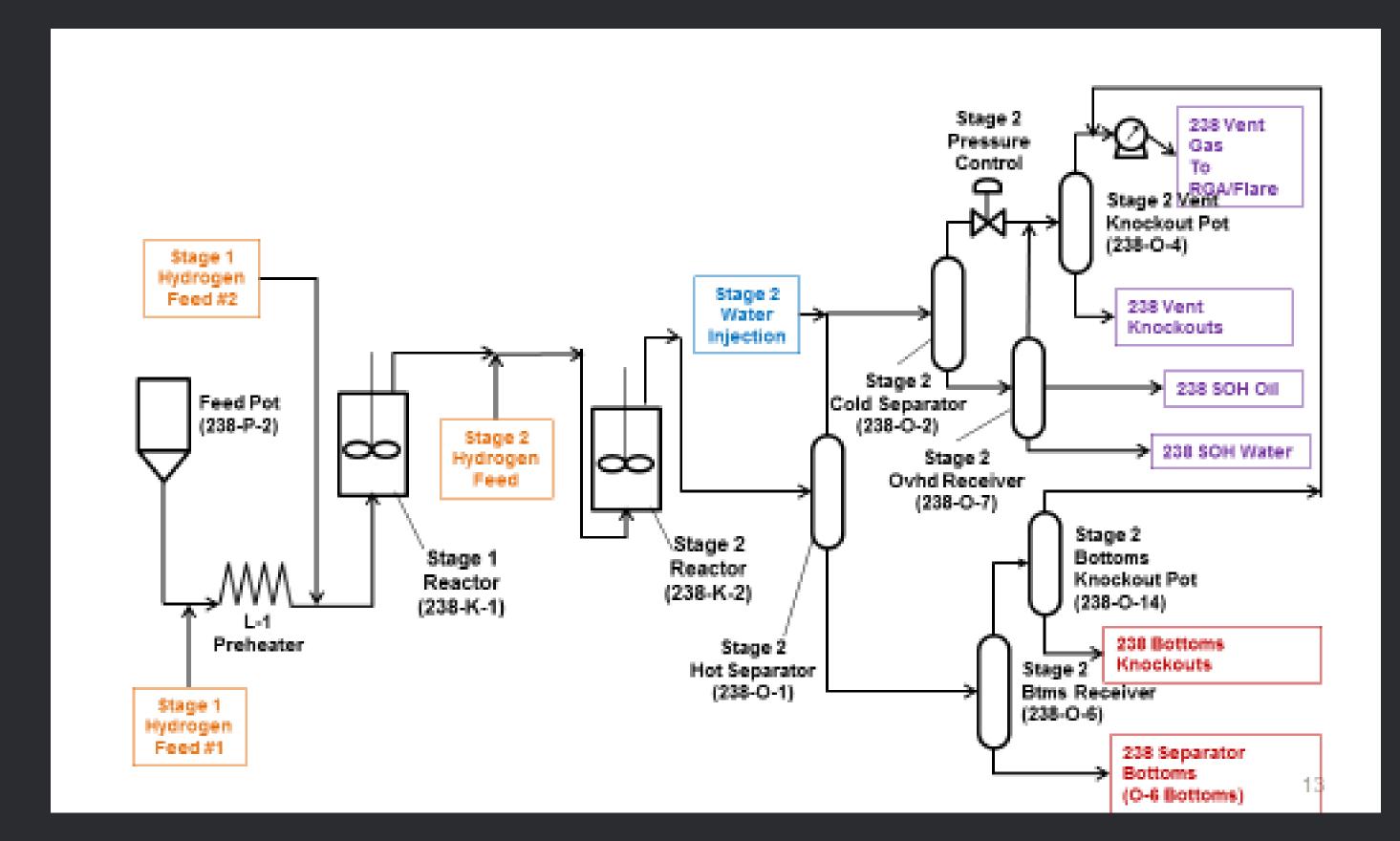
Run# 223- 28-	Reactor #	Time @Temperature Minutes	Temperature deg C	Starting Pressure	Coal g	Solvent g
6	K-1	60	400	6.90 MPa/H2	4.00	16.00
6	K-2	60	400	3.45 MPa/H2	4.00	16.00
7	K-1	90	400	6.90 MPa/H2	4.00	16.00
7	K-2	90	400	3.45 MPa/H2	4.00	16.00
8	K-1	45	413	6.90 MPa/H2	4.00	16.00
8	K-2	45	413	3.45 MPa/H2	4.00	16.00
9	K-1	60	413	6.90 MPa/H2	4.00	16.00
9	K-2	60	413	3.45 MPa/H2	4.00	16.00
10	K-1	30	407	6.90 MPa/H2	4.00	16.00
10	K-2	30/30	407/418	6.90 MPa/H2	4.00	16.00

Micro-autoclave (Unit 223) Coal Reactivity Testing Results pt.1

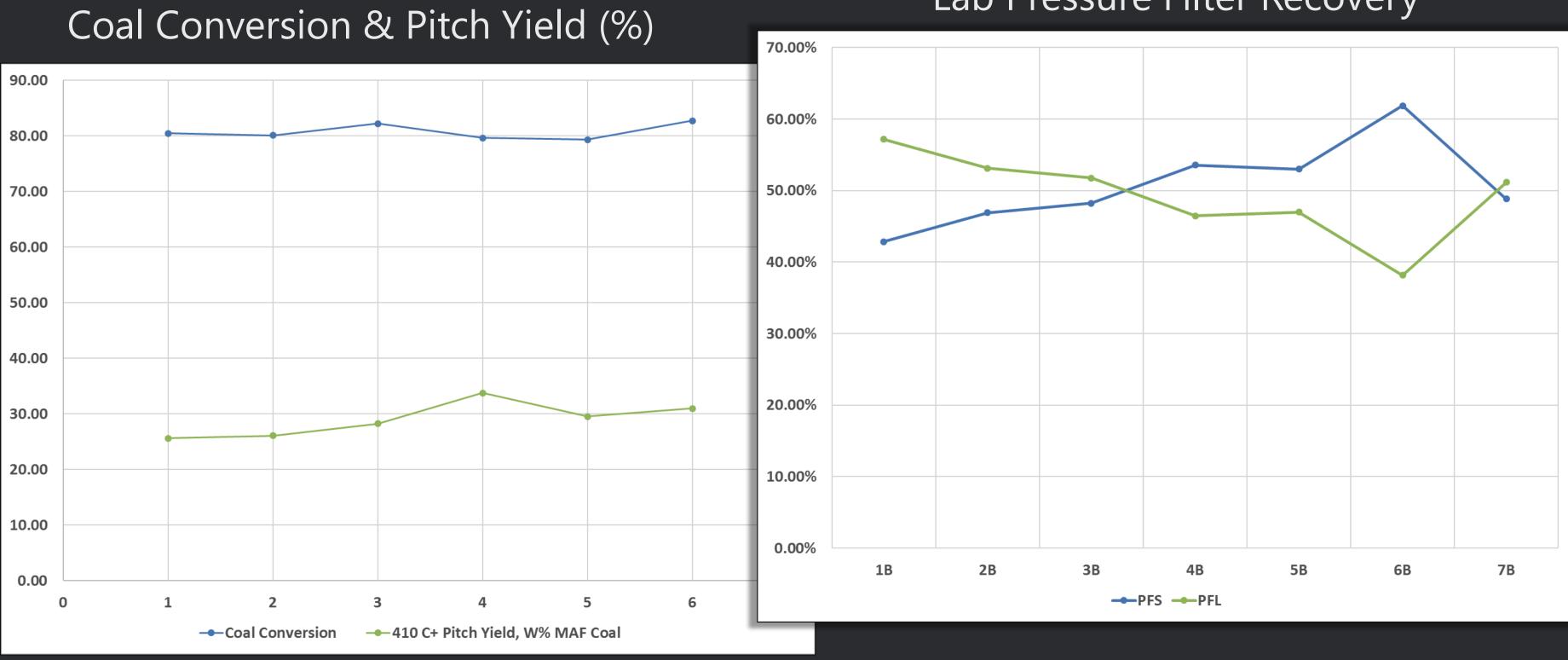
223-28		6	6	7	7	8	8	9	9	10	10
Reactor		K-1	K-2	K-1	K-2	K-1	К-2	K-1	К-2	К-1	K-2
Conditions											
Pressure	Мра	6.9	3.5	6.9	3.5	6.9	3.5	6.9	3.5	6.9	6.9
Temperature	С	400	400	400	400	413	413	413	413	407	407/418
Time	minutes	60	60	90	90	45	45	60	60	30	30/30
Mass Balance											
Coal	g	4.00	4.00	4.01	4.00	4.00	4.01	4.00	4.01	4.00	4.01
MF Coal	g	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40	3.40
Solvent	g	<u>16.01</u>	<u>16.02</u>	<u>16.02</u>	<u>16.02</u>	<u>16.01</u>	<u>16.01</u>	<u>16.01</u>	<u>16.01</u>	<u>16.01</u>	<u>16.01</u>
Total	g	19.41	19.42	19.42	19.42	19.41	19.41	19.41	19.41	19.41	19.41
Filter Solids	g	0.73	0.96	0.63	0.83	0.62	0.85	0.62	0.85	0.99	0.49
Filter Liquid	g	<u>19.47</u>	<u>19.26</u>	<u>18.67</u>	<u>18.78</u>	<u>18.86</u>	<u>19.09</u>	<u>18.86</u>	<u>19.09</u>	<u>18.65</u>	<u>18.97</u>
Total	g	20.20	20.22	19.30	19.61	19.48	19.94	19.48	19.94	19.64	19.46
Material Balance	%	104.09	104.10	99.34	100.99	100.37	102.73	100.37	102.73	101.12	100.25
Ash Balance	%	74.93	91.83	99.31	103.21	105.93	107.80	105.93	107.80	111.01	106.15

Micro-autoclave (Unit 223) Coal Reactivity Testing Results pt. 2

223-28		6	6	7	7	8	8	9	9	10	10
Reactor		K-1	K-2	K-1	K-2	K-1	K-2	K-1	K-2	К-1	K-2
Conditions											
Pressure	Мра	6.9	3.5	6.9	3.5	6.9	3.5	6.9	3.5	6.9	6.9
Temperature	С	400	400	400	400	413	413	413	413	407	407/418
Time	minutes	60	60	90	90	45	45	60	60	30	30/30
Conversion											
Coal	%	75.00	73.02	85.84	80.36	87.15	80.85	89.80	83.25	77.76	91.02
Toluene Ins	%	71.41	71.14	84.33	78.40	83.19	77.62	86.16	79.08	72.42	87.14
СНХ	%	57.64	55.32	71.12	69.06	69.89	65.40	67.77	69.70	62.49	74.94
MCR	%	55.07	54.35	64.55	62.65	66.39	62.57	67.12	64.20	57.38	67.78
410 C+	%	30.65	36.92	44.59	42.13	38.97	42.90	42.20	35.54	30.65	39.22
525 C+	%	44.61	50.88	58.10	57.31	53.66	56.87	55.41	49.15	46.14	56.29
525+ Yield	W% MAF	30.39	22.14	27.74	23.05	33.49	23.98	34.39	34.10	31.61	34.73
525 C+ MCR	%	65.58	84.32	76.75	76.80	62.00	76.20	65.94	55.86	64.45	66.91
525+ TI	%	11.84	8.48	5.45	8.51	11.84	13.46	10.56	12.22	16.88	11.15
525+Asphaltene	%	45.29	71.47	47.60	40.53	39.71	50.96	53.50	27.51	31.41	35.14
MCR/Asphaltene		1.45	1.18	1.61	1.90	1.56	1.50	1.23	2.03	2.05	1.90
410+ Yield	W% MAF	44.36	36.10	41.25	38.23	48.18	37.95	47.60	47.71	47.10	51.80
410 C+ MCR	%	44.94	51.72	51.61	46.31	43.09	48.16	47.64	39.93	43.26	44.86
410+ TI	%	8.11	5.20	3.67	5.13	8.23	8.51	7.63	8.74	11.33	7.48
410+Asphaltene	%	31.03	43.84	32.01	24.44	27.60	32.21	38.65	19.66	21.08	23.56
MCR/Asphaltene		1.45	1.18	1.61	1.90	1.56	1.50	1.23	2.03	2.05	2 1


Micro-autoclave (Unit 223) Coal Reactivity Testing

- The last test performed (Test 10) in K2 simulated a 2-stage operation ullet
- Reaction time of 30 minutes in each stage ullet
- Temperatures of 407°C and 418 °C respectively. ullet
- Results from this last test are excellent with: ightarrow
 - 90 % coal conversion,
 - \circ 35 % 525 C+ pitch yield
 - MCR:Asphaltene ratio of 1.9
- These conditions were selected for continuous operation in the pilot (Unit 245). ullet

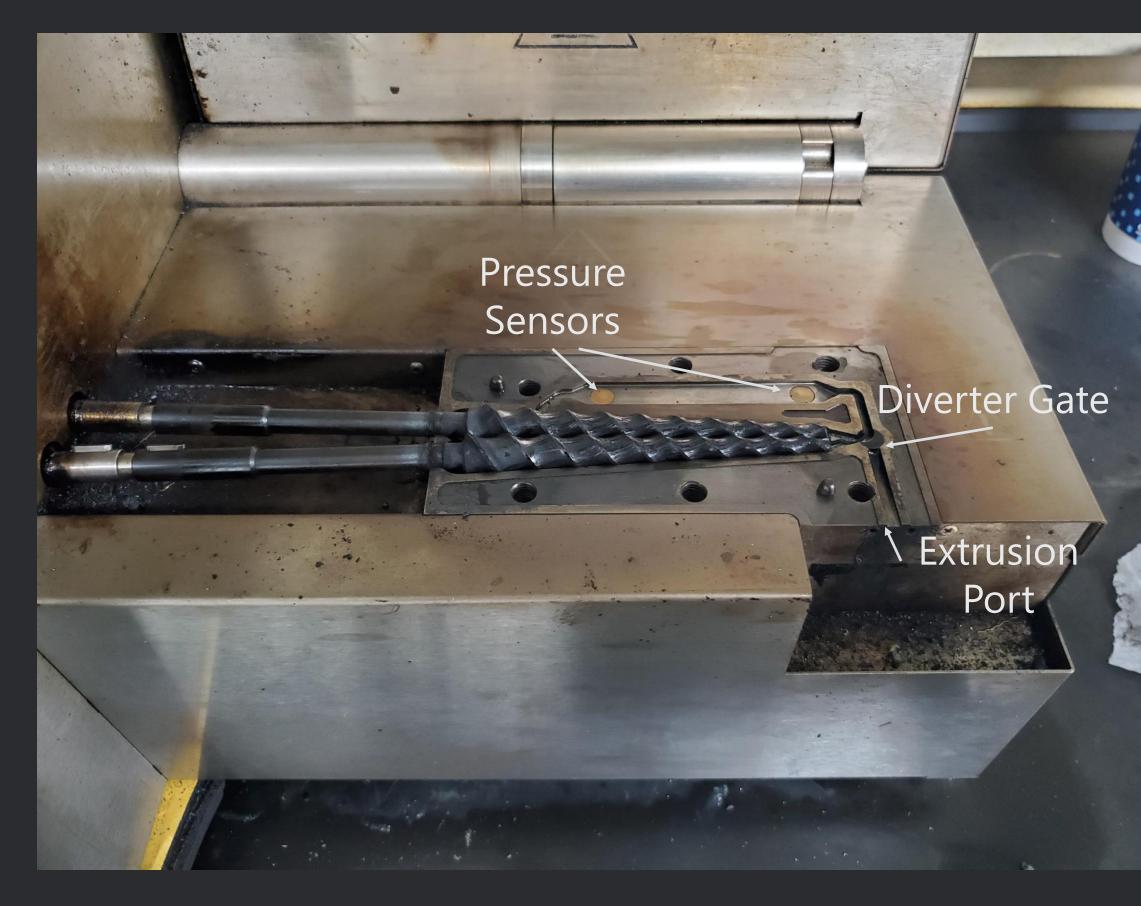

Pilot Operations (Unit 245) Processing

Pilot Operations (Unit 245) Processing

Per 7 days of operation

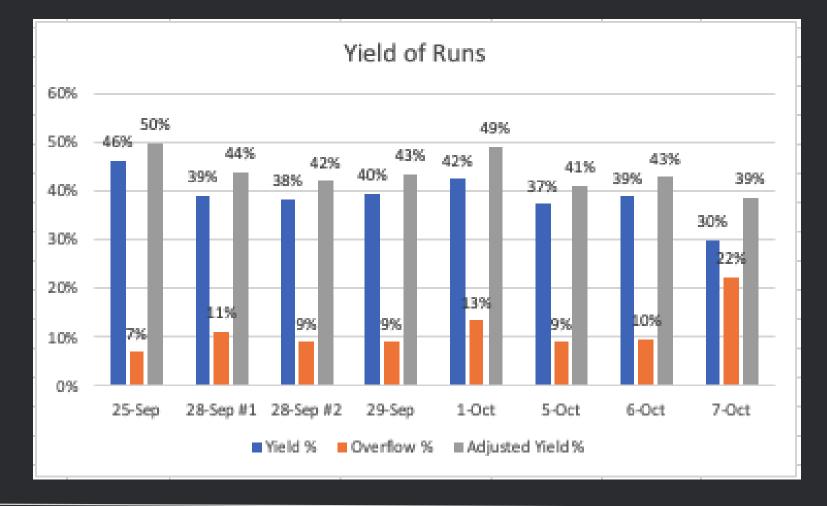
Carbon Fiber Precursor Pitch from Low-Cost Powder River Basin Coal

Lab Pressure Filter Recovery

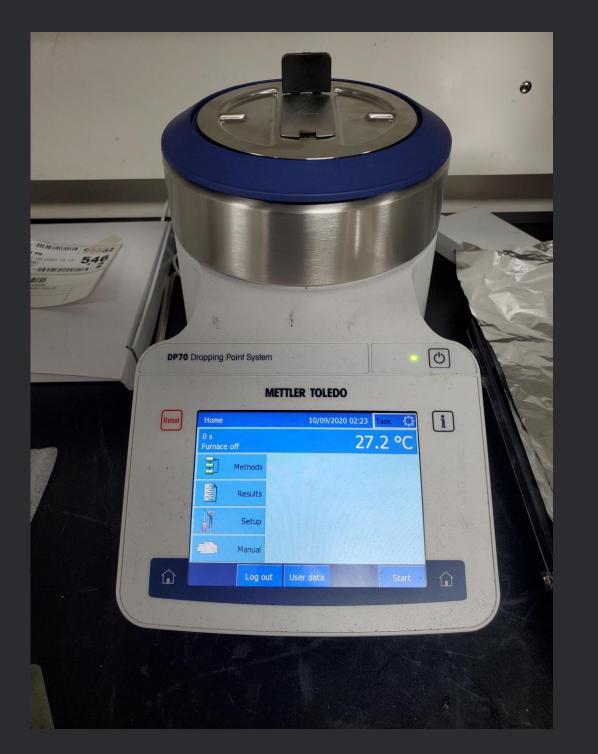

Conversion of Pitch to Mesophase by Ramaco

HAAKE Minilab 3 Conical Twin Screw Extruder

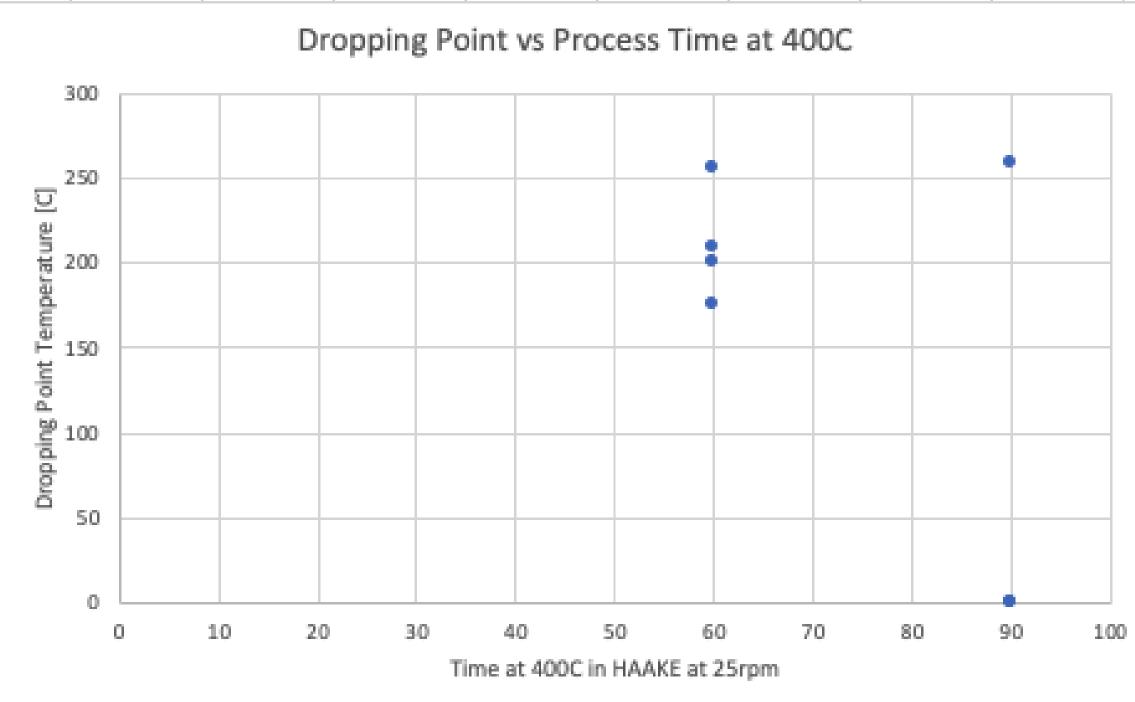
Conversion of Pitch to Mesophase by Ramaco



Pitch recirculates during thermal treatment and is extruded after completion

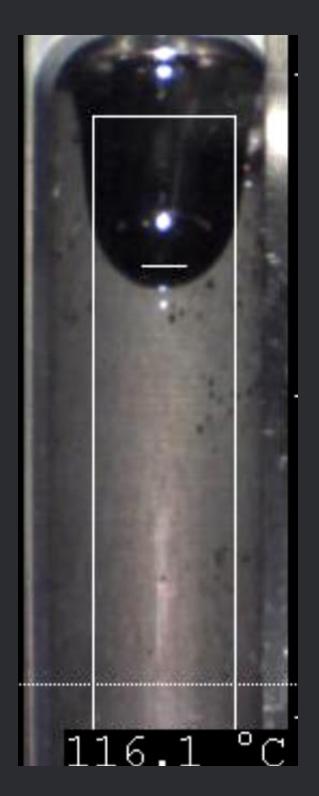

Conversion of Pitch to Mesophase by Ramaco

Date 💌	Time 🔻	Temperature	Atmosphere 🔽	Droppin 🔽	Yield 🛪 🔽	Overflow 5	Adjusted Yield
25-Sep	120	380° C	N2 Continuous	191.6° C	46%	7%	50%
28-Sep #1	60	400° C	N2 Continuous	174.7° C	39%	11%	44%
28-Sep #2	60	400° C	N2 Continuous	208.6* C	38%	9%	42%
29-Sep	90	400° C	N2 Continuous	No Drop	40%	9%	43%
1-Oct	90	400° C	N2 Continuous	259.2* C	42%	13%	49%
5-Oct	60	400° C	N2 Box	256.0° C	37%	9%	41%
6-Oct	60	400° C	N2 Box	200.5° C	39%	10%	43%
7-Oct	90	400° C	N2 Box	No Drop	30%	22%	39%



Conversion of Pitch to Mesophase by Ramaco

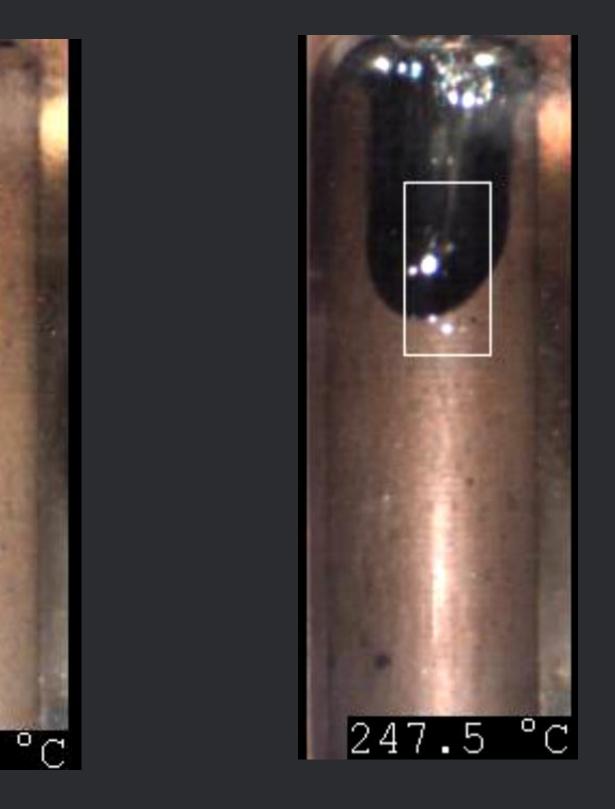
Mettler DP70



- Large Variability in Dropping Point
- Observed Oxidation at Extrusion Port
- Added Cover and Nitrogen Purge on Exit Port

Conversion of Pitch to Mesophase by Ramaco

207.3



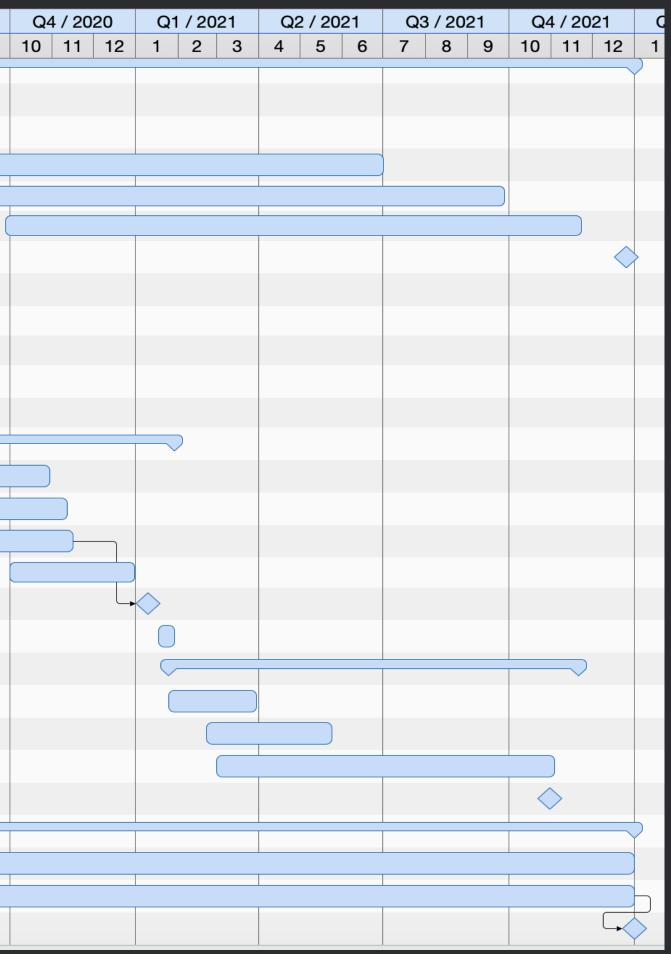
90 mins at 400C Sept. 29, 2020 Two-phase Behavior

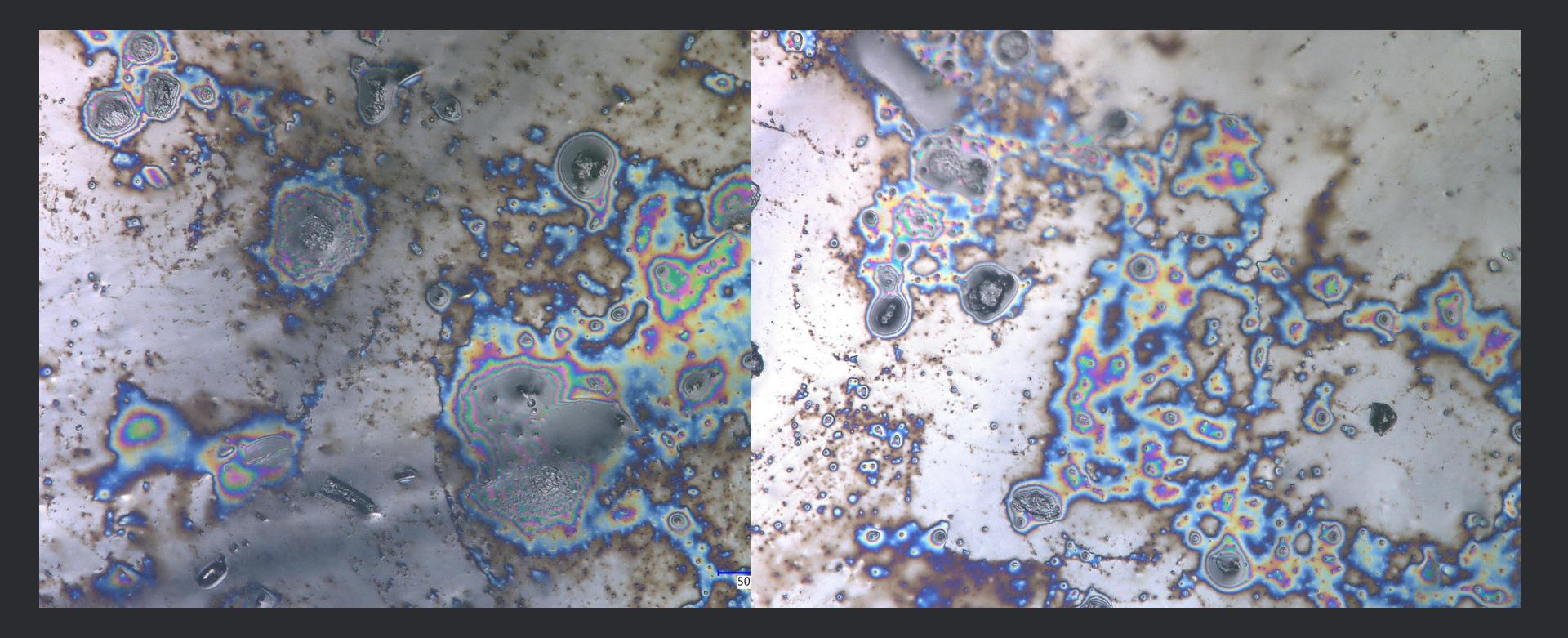
As-Received Isotropic Pitch

Carbon Fiber Precursor Pitch from Low-Cost Powder River Basin Coal

90 mins at 400C Oct. 1, 2020

Conversion of Pitch to Mesophase by Ramaco


Added Box for Nitrogen Purge at Inlet and Exit Ports


Title			4 / 20	10	01	1 / 20	120	0	2 / 20	20	Q3 / 2020		
The	Q 9		11	12	1	2	3	4	5	6	7	8	9
▼ Task 1 Project Management													
Finalize Teaming Agreement between Ramaco and Sub-Recipient													
Update Project Management Plan		<	\diamond										
Quarterly Reports													
Topical Reports													
Briefings/Technical Presentations													
Final Report													
▼ Task 2 Coal/Conversion Screening								\rightarrow					
Subtask 2.1 Extraction/Shipping/Recieving of Coal)								
Subtask 2.2 Preparation of Coal													
Milestone 2 Completion of Task 2						<	\diamond						
Task 2 > Task 3 Decision Planning Point								þ					
Task 3 Feedstock Production													
Subtask 3.1 LSDCL Processing													
Subtask 3.2 Liquid Distillation to Isotropic Pitch													
Subtask 3.3 Delivery of Pitch to Ramaco													
Subtask 3.4 Conversion of Isotropic Pitch to Mesophase													
Milestone 3 Completion of Feedstock Production													
Task 3 > Task 4 Decision Planning Point													
Task 4 Carbon Fiber Production													
Subtask 4.1 Carbon Fiber Spinning Preparations													
Subtask 4.2 Set-up of Mesophase to Fiber Forming Equipment													
Subtask 4.3 Carbon Fiber Formation Testing													
Milestone 4 Complete Carbon Fiber Formation Testing													
Task 5 Commercialization Plan							(
Subtask 5.1 Determination of Overall Process Yields													
Subtask 5.2 Integrated System Capital Cost Estimation													
Milestone 5 Completion of Feasibility Assessment													

COVID-19 Impacts March-May 2020, Project Back on Track

Conversion of Pitch to Mesophase by Ramaco

Coalescing Mesophase Domains Observed after 60mins at 400C (Microscopy of Un-polished Pitch Surface)

Thank You

www.ramacocarbon.com

Acknowledgements

Terrapower: Franscesco Deleo Josh Walter Pyongchung Kim DOE PM: Jessica Mullen

HTI: John Duddy Jeffery Gentler Sukesh Parasher DOE PM: Mike Fasouletos

