A Novel Process for Converting Coal to High-Value Polyurethane Products

DOE/NETL Agreement DE-FE0031795

Dr. Satya Chauhan; PI/PM; Battelle
Chauhan@Battelle.org; 614-424-4812
Project Overview

Coal to Polyurethane (PU) Foam Products

- Client: DOE/NETL; Cost Share Grant from State of Ohio (OCDO/ODSA)
- Project Team: Battelle, mtterra, and MLB Molded Urethane Products
- Project Manager: Dr. Satya Chauhan (Battelle)
- Period of Performance: 2 years; from 10/1/2019 to 9/30/2021
- Convert coal-derived liquids to high-value polyurethane foam
Statement of Problem

• Increase utilization of coal through new applications
• Produce high-value solid products from coal via direct liquefaction of coal
 • Bituminous coal
 • Western coal
• Need conversion processes to efficiently improve value proposition of coal
Project Objectives

Demonstrate a novel coal-to-PU foam process at bench-scale and establish a straightforward path to near-term commercial production

• Confirm a high rate of return compared to petroleum-based, solid PU foam products
• Determine the PU foam properties to establish a market value and demand for these high-value solid products
• Develop a process scale-up and commercialization plan
• Advance the coal-liquids-to-polyols process to TRL 5 from the current TRL 3
• Promote the use of coal in the face of environmental regulations
Alignment With DOE Objectives

Areas of Interest (AOI)

• Advanced technology aligns with AOI 2-Producing High-Value Solid Products from Domestic U.S. Coal
 • 2A-Laboratory testing of technologies for making high-value solid products from coal
 • 2B-Continuous process testing of technologies for high-value solid products from coal

• Project aimed at producing polyols (primary component in PU foams) with typical value ~$2000/Metric Tonne (MT)

• Can utilize various feedstocks
 • Coal liquefaction products
 • Bituminous or sub-bituminous coal
Proposed Technology

- Coal is turned to liquids using Battelle’s proven CTL technology based on use of bio-based solvents; optional fuel-oil byproduct
- The coal-derived liquids are treated via ozonation/transesterification to create polyols for making PU-foam products, which typically sell for over $5,000/MT; this Subsystem 2 is the only one needing development
- Determine performance advantages versus industrial polyols; expect good mechanical performance due to aromatic content of coal
Project Starting Status

- Technology Readiness Level (TRL) 3
 - Proof of concept Demonstrated
 - Filed patent application
- Current target for feedstock
 - Direct coal-liquefaction liquids and its fractions
- Solvent ozonation
- Transesterification step
 - Short-chain polyols
Technology Benchmarking

- Successful benchmarks
 - PU foam properties
 - Reactivity
 - Density
 - Compression at break
 - Polyol properties
 - Typical hydroxyl value range
 - Viscosity
 - Density

- Currently benchmarking versus industrial standard Huntsman SG-360
 - Hydroxyl value=360
 - Sucrose/Glycerol initiated polyether polyol
 - Viscosity ~3500 cps at 25C
 - Density 1.06 g/cm3
Project Plan

- Oct 1, 2019 start date
- Task 2-complete
- Tasks 3, 4, and 5 in progress
- 1-2 months behind, due to COVID-19 restrictions
- Back on schedule by end of Q5
Results for Coal Liquefaction

- Consider $\geq 80\%$ solubilization of coal as successful
- 18 tests on Ohio (Middle Kittanning) coal, with 80-89% solubilization at various proportions of coal-liquids recycle for slurrying coal
- Tests on Western (Wyoming) coal completed; results are in progress
Polyol Formation

- Main ozonolysis step parameters
 - 1 equivalent (eq)
 - 2 eq
 - Temperature
 - Residence time

- Transesterification with
 - C3 polyols
 - Other primary polyols

- 28 Polyols produced to date
- Found 1 eq ozone to be acceptable for polyol formation
Initial Results on Foam Properties

- Evaluation of foams from 19 coal-derived polyols complete
- Evaluation of foams from 9 additional polyols in progress
- Results compared to Standard SG-360 polyol
- Performed 2 levels of SG-360 replacement
 - 50%
 - 100%
- Multiple coal-derived polyols gave good performance
- 1 eq ozone is adequate
Current Scale-Up Activities

- Bench scale will utilize Metler RC-1 reactor
- Initially 1-kg continuous stirred tank, batch reactor
 - Obtain heat data
 - Test up to 3-hr reaction time
- Switch to continuous after batch
 @ ~0.3 Kg/hr
- Polyol formation run via batch transesterification
Preliminary Technoeconomic Analysis

- Assumed a coal-derived polyol production plant capacity of 162 MT/day at 6.5% of US PU foam demand
- Current selling price of SG-360 polyol estimated at ~$1.00/lb
- Assumed coal-derived polyol selling price of $0.80/lb
- Estimated Return on Investment (ROI): 24%
Go/No-Go Criteria Met

Success Criteria

• ≥80% of liquified coal can be converted to polyols: Achieved 80-89%
• The properties of at least one coal-derived PU foam are acceptable for higher value (over $5,000/MT) foams: Achieved
• The return on investment (ROI) is at least 12%/year; Estimated at 24%
Market Benefits

- Worldwide PU foam market is over $80 billion/year
- US PU foam market ~ $20 billion/year
- Advantageous properties through use of coal—as demonstrated in prior work
 - Satisfying the US demand for PU foam for insulation consume 4,000 MT per day (1.3 million MT/yr) of coal; 5.2 million MT/yr for worldwide PU foam demand
- PU foam is widely produced and used in USA, and this project has support from mterra and MLB Molded Plastics
- Converts low cost coal to high value PU foam (solid) products
- Fixes fossil-based carbon in solid products, reducing carbon footprint
- Known conversion chemistry from other higher priced feedstocks
- Drop-in replacement of current PU components
Path To Market

• Several potential commercialization partners identified
 • Producer of coal-derived polyols
 • Manufacturers of rigid and/or flexible foams

• Easiest path to market is partner with foam-formulators to assess product performance for drop-in replacement

 Courtesy: MLB; http://mlbproducts.net/mlb5_009.htm
Conclusions

• Demonstrated the feasibility of converting coal to polyurethane (PU) foam, meeting the Go/No Go criteria of at least 80% conversion of coal carbon to PU foam carbon with a high (24%) return on investment (ROI)
• Process seems applicable to both bituminous and sub-bituminous coals
• Produced 28 polyols from coal, using various test conditions, including duplicates
• Foams from coal initially determined to have performance equivalent to industrial standard
• Bench-scale, continuous system ready to scale-up the coal-to-polyol process to TRL 5
• Project discussions with two potential commercialization partners have been quite positive; open to other potential partners
Acknowledgements

- Cost share provided by Ohio Coal Development Office (OCDO)
- Commercialization guidance provided by mterra and MLB
- Dan Garbark; Battelle: Bench-scale testing
- Jeff Cafmeyer; Battelle: PU foam characterization
- Russ Smith and Darwin Argumedo; Battelle: Process scale-up and TEA
- Kathryn Johnson; Battelle: Project management support