Combustion and Fluid Property Experimental Investigation for Improved Design of Supercritical CO$_2$ Power Cycle Components

PI: Prof. Subith Vasu

Associate Professor
UCF, Orlando, FL

DE-FE0025260

UTSR Meeting Virtual, 11/19/2020
Contact: subith@ucf.edu
Ph: 407-823-3468
Supercritical CO₂ Cycles

- High-pressure, closed or open Brayton Cycle
- CO₂ is used as the working fluid above the critical point
- High overall cycle efficiency

Size comparison of various turbines (~20 time size reduction compared to steam cycles)
Significant reduction of compressor work due to high fluid density close to the critical point,
Introduction to sCO$_2$ Power Cycles

- Possibility of wide application.

What is challenging?

“Typical” sCO$_2$ Cycle Conditions

<table>
<thead>
<tr>
<th>Application</th>
<th>Organization</th>
<th>Motivation</th>
<th>Size [MWe]</th>
<th>Temperature [°C]</th>
<th>Pressure [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>DOE-NE</td>
<td>Efficiency, Size</td>
<td>300 - 1000</td>
<td>400 - 800</td>
<td>350</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>DOE-FE</td>
<td>Efficiency, Water</td>
<td>500 - 1000</td>
<td>550 - 1200</td>
<td>150 - 350</td>
</tr>
<tr>
<td>Solar Power</td>
<td>DOE-EE</td>
<td>Efficiency, Reduction</td>
<td>10 - 100</td>
<td>500 - 800</td>
<td>350</td>
</tr>
<tr>
<td>Concentrated</td>
<td>DOE-NNSA</td>
<td>Efficiency, Water</td>
<td>10, 100</td>
<td>400 - 800</td>
<td>350</td>
</tr>
<tr>
<td>Shipboard Propulsion</td>
<td>CNO</td>
<td>Size, Efficiency</td>
<td>< 1, 1, 10</td>
<td>230 - 650</td>
<td>150 - 350</td>
</tr>
<tr>
<td>Shipboard House Power</td>
<td>DOE-EE</td>
<td>Size, Efficiency</td>
<td>< 1, 1, 10</td>
<td>230 - 650</td>
<td>15 - 350</td>
</tr>
<tr>
<td>Waste Heat Recovery</td>
<td>DOE-EE</td>
<td>Simple Cycles</td>
<td>1, 10, 100</td>
<td>15 - 350</td>
<td>150</td>
</tr>
<tr>
<td>Geothermal</td>
<td>DOE-EERE</td>
<td>Efficiency, Working fluid</td>
<td>1, 10, 50</td>
<td>100 - 300</td>
<td>120</td>
</tr>
</tbody>
</table>

Source: Pictures are taken from SWRI tutorials

- At these high operating pressures, simulation tools are very important because the experiments at these operating conditions are expensive, time consuming and dangerous.
Direct-fired Cycle: The Allam Cycle

- It is the direct-fired sCO$_2$ cycle.

300 bar and 95% CO$_2$ dilution by mass
NET Power’s Allam Cycle Demo Plant

- First successful test fire → May 2018
- Target for 300 MW commercial plant → 2021

Knowledge gaps before we started

- Existing state-of-the-art, such as GRI-3.0 Mechanism, has only been validated for pressures up to 10 atm
- Mechanisms have not been developed for CO₂ diluted mixtures
- Updated/new mechanism will allow for accurate combustor modeling with multi-step combustion using a validated mechanism
- CFD combustion models need to consider non-ideal effects
 - Thermodynamics and kinetics are unknown!!
 - Fundamental work can shed light into this challenge

Effects of Increasing Pressure. Equilibrium calculation for CH₄/O₂/CO₂ at \(\phi = 1 \). Figure adapted from Strakey, 2014, sCO₂ symposium
Strategy successfully applied to Direct-fired Supercritical CO$_2$ Cycles: 300bar pressure CH$_4$/O$_2$, natural gas/O$_2$ mixtures

UTSR Project Impact:
- Understanding the reacting processes at 300bar require new facilities
- Vasu Lab published 26 journal papers
- > 40 conference papers at ASME Turbo Expo, sCO2 symposium, AIAA Meetings, Combustion Institute Meetings
- Prof. Vasu provided Tutorials at Turbo Expo, CelarWater Celan Energy Conference

Burn Fuels in CO$_2$ Environment

Fuel + O$_2$ → CO$_2$ + H$_2$O

300 bar pressure (similar to newer methane rocket engines SpaceX, Blue Origin)

Everything we have done so far is the first in the world! Thanks to the UTSR program

Industry/Government Sponsors and Collaborators

Vasu Lab helped NET Power’s Allam Cycle Demo Plant
Selected Examples from Our Work
Combustion chemistry/kinetics are different at high pressure

1 bar

300 bar

(Strakey, SCO2 symposium 2018, NETL)
Ignition Results in CH₄ Under SCO₂ Conditions: 77.5% CO₂ addition

With CO₂ addition there is some pressure rise (7.5% fuel) after ignition → but not as bad as the ones without CO₂.
Chemical Mechanism Development Summary

• Combustion kinetics model refinement/development

• Existing kinetic models are only valid at low pressures < 50 atm

• We used multi-scale simulations to extend their validity to mixtures up to 300 bar by:
 1. Quantum Mechanic simulations of the activation enthalpies in gas vs. CO₂ environment
 2. Molecular Dynamic simulations of reaction processes
Molecular Dynamic Study: CO + OH → CO$_2$ + H

(results)

OVERALL REACTION: \(\cdot\text{OH} + \text{CO} \rightarrow \text{CO}_2 + \text{H} \cdot \)

(R1, \(k_1 \))

Actually goes through these 3 reactions including HOCO intermediate

\(\cdot\text{OH} + \text{CO} \rightarrow \text{HOCO} \cdot \) \hspace{1cm} (R2, \(k_2 \))

\(\text{HOCO} \cdot \rightarrow \cdot\text{OH} + \text{CO} \) \hspace{1cm} (R2r, \(k_{-2} \))

\(\text{HOCO} \cdot \rightarrow \text{CO}_2 + \text{H} \cdot \) \hspace{1cm} (R3, \(k_3 \))

\[
k_1 = \frac{k_2 k_3}{k_{-2} + k_3}
\]
Molecular Dynamic Study: \(\text{CO} + \text{OH} \rightarrow \text{CO}_2 + \text{H} \)

(results)

QM / MM model was used.
MM layer look like small tubes, QM layer – particle with balls
QM: MNDO; MM: force field CHARMM27
Molecular Dynamic Study: CO+OH→CO$_2$+H (results)

- CO$_2$ molecules are among the most efficient to accelerate heat release reaction with pressure
- mixed quantum mechanics/molecular mechanics (QM/MM) theory level and molecular dynamics (MD) approach
UCF’s SCO_2 Combustion Mechanism Performance

Mixture: 3.91% CH4, 9.92% O2, 86.77% CO2
Pressure: ~300 bar

- UCF 1.1 is performing better for this lean mixture compared to Aramco 2.0. Performance is significantly improved.

- Average deviation between UCF 1.1 detailed mechanism and 34-species mechanism is 0.25%.
Syngas /O₂/CO₂ Ignition Delay Time Measurements: Comparisons with Modeling

CO₂=85%

12 Literature kinetic mechanisms tested

All mechanisms overpredict data at high pressure!
Performance of sCO$_2$ Mechanism Developed by UCF: Summary

High pressure Ignition Delay Times in Methane:

- The UCF 1.1 mechanism
 → better than Aramco 2.0
 → has important reaction rates calculated by molecular level simulations.

UCF’s HiPER-STAR Facility (for Allam cycle)

High Pressure Extended Range Shock Tube for Advanced Research

Capabilities

- High-Pressure Combustion and Autoignition Measurements of Fuels including sCO$_2$ conditions for Allam Cycle-Both syngas and natural gas.
- Toxic impurities NOx, SOx, H$_2$S,
- Hydrogen or ammonia combustion with impurities
- Coal-derived fuels

Up to 1000 bar sCO$_2$ shock tube with capabilities to include natural gas and real syngas and impurities (e.g., Nitrogen oxides)

Unique facility in the world where all types of syngas mixtures can be tested for Allam cycle conditions
CFD Simulation is performed with the premixed CMC in the OpenFOAM RANS CFD code.

The current PCMC-OpenFOAM model is capable of using large mechanisms. The current simulation uses 493 species and 2,714 reactions.

Stoichiometric CH4/O2 with 95% by mass CO2.

Reactor network modeling

- Therefore, this work mainly focuses on reducing the domain of design considerations for sCO2 combustor development with simple 0-D and 1-D modeling.

- Extensively used by the gas turbine community.
Ongoing Work ➔ (Some of the materials are retracted as they are not yet publicly releasable)
Figure 1: temperature profiles predicted by LESLIE with mixture-averaged diffusion and with constant Lewis number = 1 at different time instants (Masi et al., 2013)

MD Simulations for Transport Properties

• Molecular dynamics simulations are performed by open-source LAMMPS (large-scale atomic/molecular massively parallel simulator) package.

• Some preliminary result for sCO$_2$ diffusion

<table>
<thead>
<tr>
<th>NPT</th>
<th>32 CO$_2$</th>
<th>(<E>)</th>
<th>(<T>)</th>
<th>(<V>)</th>
<th>(<P>)</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ns</td>
<td>kcal</td>
<td>Kelvin</td>
<td>Å3</td>
<td>atm</td>
<td>10^{-8} m2/s</td>
<td></td>
</tr>
<tr>
<td>1,000 K</td>
<td>-1888.65</td>
<td>999.266</td>
<td>20145.8</td>
<td>99.7942</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>1,000 K</td>
<td>-1863.83</td>
<td>1001.17</td>
<td>14498.9</td>
<td>206.885</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>1,000 K</td>
<td>-1846.55</td>
<td>998.28</td>
<td>12044.1</td>
<td>298.9</td>
<td>14.3</td>
<td></td>
</tr>
</tbody>
</table>
sCO2 Flame Test Rig -670bar (ignition experiments, flame development, flame speed, flow visualization)

First measurements of Temperature Distribution using Laser-Induced Fluorescence (LIF) in SCO₂ flows conducted near 80bar, *Suhyeon Park, Subith Vasu, et al. Optics Letters*
Students and postdocs

Graduate Students

1) Owen Pryor
(Ph.D. 2018, now at Southwest Research Inst. -SwRI)

2) Raghu Kancherla
Ph.D. 2019, UCF postdoc

3) Samuel Barak
Ph.D. 2019, UCF, Siemens, Boeing

Post docs

1) Dr. Chun-Hung Wang, Northland

2) Dr. Sergey Panteleev
(Lead Engineer, Center of Metrology of Nizhny Novgorod, Russia))

3) Dr. Batikan Koroglu
(Research staff, LLNL)

Undergraduate Students

1) Elizabeth Wait
(now at Los Alamos)
5 journal papers as an undergraduate
• Acknowledgement: DE-FE0025260
• Dr. Matt Adams as program manager
• Dr. Seth Lawson (previous program manager)
• Rich Dennis, Rin Burke