Combustion and Fluid Property Experimental Investigation for Improved Design of Supercritical CO₂ Power Cycle Components

PI: Prof. Subith Vasu

Associate Professor UCF, Orlando, FL

DE-FE0025260

UTSR Meeting Virtual, 11/19/2020 Contact: subith@ucf.edu Ph: 407-823-3468 https://www. http://mae.ucf.edu/VasuLab/

Supercritical CO₂ Cycles

- High-pressure, closed or open Brayton Cycle
- CO_2 is used as the working fluid above the critical point ٠
- High overall cycle efficiency •
- ← Size comparison of various turbines (~ 20 time size reduction compared to steam

cycles)

Significant reduction of compressor work due to high fluid density close to the critical point,

Cycle Efficiencies vs Source Temperature for fixed component efficiency

Introduction to sCO₂ Power Cycles

• Possibility of wide application.

Fossil Fuel

Call Control C

Geothermal

Concentrated Solar Power

Nuclear

Ship-board Propulsion

Source: Pictures are taken from SWRI tutorials

What is challenging?

"Typical" sCO2 Cycle Conditions

Application	Organization	Motivation	Size [MWe]	Temperature	Pressure
				[C]	[bar]
Nuclear	DOE-NE	Efficiency, Size	300 - 1000	400 - 800	350
Fossil Fuel	DOE-FE	Efficiency, Water Reduction	500 - 1000	550 - 1200	150 - 350
Concentrated Solar Power	DOE-EE	Efficiency, Size, Water Reduction	10 - 100	500 - 800	350
Shipboard Propulsion	DOE-NNSA	Size, Efficiency	10, 100	400 - 800	350
Shipboard House Power	ONR	Size, Efficiency	< 1, 1, 10	230 - 650	150 - 350
Waste Heat Recovery	DOE-EE ONR	Size, Efficiency, Simple Cycles	1, 10, 100	< 230; 230-650	15 - 350
Geothermal	DOE-EERE	Efficiency, Working fluid	1, 10, 50	100 - 300	150

• At these high operating pressures, simulation tools are very important because the experiments at these operating conditions are expensive, time consuming and dangerous.

Direct-fired Cycle: The Allam Cycle

• It is the direct-fired sCO₂ cycle.

Source: https://www.modernpowersystems.com/features/featurebreaking-ground-for-a-groundbreaker-the-first-allam-cycle-power-plant-4893271/featurebreaking-ground-for-a-groundbreaker-the-first-allam-cycle-power-plant-4893271-477348.html

NET Power's Allam Cycle Demo Plant

Source: https://www.prnewswire.com/news-releases/net-power-achieves-major-milestone-for-carbon-capture-with-demonstration-plant-first-fire-300656175.html

- First successful test fire \rightarrow May 2018
- Target for 300 MW commercial plant \rightarrow 2021

SEATERing to the energy needs of society

Knowledge gaps before we started

- <u>Existing</u> state-of-the-art, such as GRI-3.0 Mechanism, has only been validated for pressures up to 10 atm
- Mechanisms have not been developed for CO₂ diluted mixtures
- Updated/new mechanism will allow for accurate combustor modeling with multistep combustion using a validated mechanism
- CFD combustion models need to consider non-ideal effects
- Thermodynamics and kinetics are unknown!!
- Fundamental work can shed light into this challenge

Effects of Increasing Pressure. Equilibrium calculation for $CH_4/O_2/CO_2$ at ϕ = 1. Figure adapted from Strakey, 2014, sCO2 symposium

Strategy successfully applied to Direct-fired Supercritical CO₂ Cycles: 300bar pressure $CH_4/O_{2,}$ natural gas/O₂ mixtures

UTSR Project Impact:

- Understanding the reacting processes at 300bar require new facilities
- Vasu Lab published 26 journal papers
- > 40 conference papers at ASME Turbo Expo, sCO2 symposium, AIAA Meetings, Combustion Institute Meetings
- Prof. Vasu provided Tutorials at Turbo Expo, CelarWater Celan Energy Conference

Burn Fuels in CO₂ Environment

Fuel + O2 \rightarrow CO₂ + H₂O

300 bar pressure (similar to newer methane rocket engines SpaceX, Blue Origin)

Everything we have done so far is the first in the world! Thanks to the UTSR program

Industry/Government Sponsors and

CH₄ without CO₂ CH₄ With CO₂ 2 Cover Page Journal Articles

Selected Examples from Our Work \rightarrow

Combustion chemistry/kinetics are different at high pressure

Ignition Results in CH₄ Under SCO₂ Conditions: 77.5% CO₂ addition

With CO_2 addition there is some pressure rise (7.5% fuel) after ignition \rightarrow but not as bad as the ones without CO_2

Chemical Mechanism Development Summary

- Combustion kinetics model refinement/development
- Existing kinetic models are only valid at low pressures < 50 atm
- We used multi-scale simulations to extend their validity to mixtures up to 300 bar by:
 - **1.** Quantum Mechanic simulations of the activation enthalpies in gas vs. CO₂ environment
 - 2. Molecular Dynamic simulations of reaction processes

Molecular Dynamic Study: $CO+OH \rightarrow CO_2+H$ (results)

OVERALL REACTION: \cdot OH + CO \rightarrow CO₂ + H· (R1, k₁)

Actually goes through these 3 reactions including HOCO intermediate

 $\cdot OH + CO \rightarrow HOCO \cdot$ (R2, k₂)

 $HOCO \rightarrow OH + CO$ (R2r, k₋₂)

 $HOCO \rightarrow CO_2 + H \cdot$ (R3, k₃)

ATERing to the energy needs of society

NSTC

Molecular Dynamic Study: $CO+OH \rightarrow CO_2+H$ (results)

QM / MM model was used. MM layer look like small tubes, QM layer – particle with balls <u>QM: MNDO</u>; <u>MM: force field CHARMM27</u>

Molecular Dynamic Study: $CO+OH \rightarrow CO_2+H$ (results)

- CO₂ molecules are among the most efficient to accelerate heat release reaction with pressure
- mixed quantum mechanics/molecular mechanics (QM/MM) theory level and molecular dynamics (MD) approach

ATERing to the energy needs of society

UCF's SCO₂ Combustion Mechanism Performance

Mixture: 3.91% CH4, 9.92% O2, 86.77% CO2 Pressure: ~300 bar

- UCF 1.1 is performing better for this lean mixture compared to Aramco 2.0. Performance is significantly improved.
- Average deviation between UCF 1.1 detailed mechanism and 34-species mechanism is 0.25%.

Syngas /O₂/CO₂ Ignition Delay Time Measurements: Comparisons with Modeling

ERing to the energy needs of society

12 Literature kinetic mechanisms tested

All mechanisms overpredict data at high pressure !

Performance of sCO₂ Mechanism Developed by UCF: Summary High pressure Ignition Delay Times in Methane:

- The UCF 1.1 mechanism
- ightarrow better than Aramco 2.0
- \rightarrow has important reaction rates calculated by **molecular level simulations**.

UCF's HiPER-STAR Facility (for Allam cycle) <u>High Pressure Extended Range Shock Tube for Advanced Research</u>

Capabilities

- High-Pressure Combustion and Autoignition Measurements of Fuels including SCO₂ conditions for Allam Cycle-Both syngas and natural gas.
- Toxic impurities NOx, SOx, H₂S,
- Hydrogen or ammonia combustion with impurities
- Coal-derived fuels

Up to 1000 bar sCO₂ shock tube with capabilities to include natural gas and real syngas and impurities (e.g., Nitrogen oxides)

<u>Unique facility in the world where</u> all types of syngas mixtures can be tested for Allam cycle conditions

SCO₂ combustor CFD: also developed industry tools for design and analysis

- CFD Simulation is performed with the premixed CMC in the OpenFOAM RANS CFD code.
- The current PCMC-OpenFOAM model is capable of using large mechanisms. The current simulation uses 493 species and 2,714 reactions.
- Stoichiometric CH4/O2 with 95% by mass CO2.

•

- Therefore, this work mainly focuses on reducing the domain of design considerations for sCO₂ combustor development with simple 0-D and 1-D modeling.
- Extensively used by the gas turbine community

Ongoing Work \rightarrow (Some of the materials are retracted as they are not yet publicly releasable)

Need for Transport Data Base

Figure 1: temperature profiles predicted by LESLIE with mixture-averaged diffusion and with constant Lewis number = 1 at different time instants (Masi et al., 2013)

Masi, E., Bellan, J., Harstad, K. G., and Okong'o, N. A., 2013, "Multi-species turbulent mixing under supercritical-pressure conditions: modelling, direct numerical simulation and analysis revealing species spinodal decomposition," Journal of Fluid Mechanics, 721, pp. 578-626.

MD Simulations for Transport Properties

 Molecular dynamics simulations are performed by open-source LAMMPS (large-scale atomic/molecular massively parallel simulator) package.

• Some preliminary result for sCO₂ diffusion

		32 CO_2			
NPT	<e></e>	<t></t>	<v></v>	< P >	D
5 ns	kcal	Kelvin	Å ³	atm	$10^{-8} \text{ m}^2/\text{s}$
1,000 K	-1888.65	999.266	20145.8	99.7942	24.2
1,000 K	-1863.83	1001.17	14498.9	206.885	17.6
1,000 K	-1846.55	998.28	12044.1	298.9	14.3

sCO2 Flame Test Rig -670bar (ignition experiments, flame development, flame speed, flow visualization)

Combustion chamber without heating jacket and Schematic of combustion test rig

First measurements of Temperature Distribution using Laser-Induced Fluorescence (LIF) in SCO₂ flows conducted near 80bar, *Suhyeon Park, Subith Vasu, et al. Optics Letters*

Techniques to be used are PLIF, Shadow Imaging

Students and postdocs

Graduate Students

1) Owen Pryor (Ph.D. 2018, now at Southwest Research Inst. -SwRI)

2) Raghu Kancherla Ph.D. 2019, UCF postdoc

3) Samuel Barak Ph.D. 2019, UCF, Siemens, Boeing

Post docs

1) Dr. Chun-Hung Wang, Northland

2) Dr. Sergey Panteleev (Lead Engineer, Center of Metrology of Nizhny Novgorod, Russia))

3) Dr. Batikan Koroglu (Research staff, LLNL)

ATERing to the energy needs of society

Undergraduate Students

1) Elizabeth Wait (now at Los Alamos)

5 journal papers as an undergraduate

- Acknowledgement: DE-FE0025260
- Dr. Matt Adams as program manager
- Dr. Seth Lawson (previous program manager)
- Rich Dennis, Rin Burke

Vasu Lab

24

