Development of Additive Manufacturing for Ceramic Matrix Composite Vanes

Dr. Stephen Lynch Dr. Michael Hickner

Students: Alex Rusted, Yifan Deng Post-doc: Dr. Will White

Students: Stephan Brinckmann, Jackson Rambough, Jennifer Hankins

Project: DE-FE0031758

This review covers the motivation, project plan, and Year 1 progress on our UTSR-supported project

Motivation: enable superalloy-like cooling features in CMC-like materials to enable higher temperature operation

Approach: push polymer-derived ceramics development through additive manufacturing engineering, polymer science, part design, and performance verification

Project plan: execute simultaneous materials/design/process engineering to regularly produce vane test articles

Current progress

To achieve DOE firing temperature targets and push higher thermodynamic efficiency, even advanced CMC materials will require some cooling

National Academies of Sciences, Engineering, and Medicine 2020. *Advanced Technologies for Gas Turbines*. Washington, DC: The National Academies Press. https://doi.org/10.17226/25630.

Klocke, et al., CIRP Annals, 2014

Highly effective internal cooling technologies used in superalloy cast parts are difficult to implement in conventional CMC's

Melt-infiltrated woven CMC

https://technology.nasa.gov/patent/LEW-TOPS-25

Binder-jet CMC with pass-through cooling

https://ntrs.nasa.gov/search.jsp?R=20160010285 2019-02-28T01:25:33+00:00Z

Project goal: enable complex cooling features in CMC-like materials for realistic shapes and confirm cooling benefit

Our approach is to develop novel chemistries and manufacturing processes, coupled with design optimization, to create internally cooled CMC vanes that can be tested

The project has five technical tasks that address process engineering, material development, modeling, and validation of cooling technologies

Task 1: Project management

Success criteria: Project Coordinator delivers all required reports to NETL

Task 2: Design, fabrication, and testing of SiOC/SiC baseline vane

Success criteria: project team is able to obtain surface temperatures on baseline SiOC/SiC internally cooled vane test articles tested in the transonic cascade at Penn State

Task 3: Modeling and optimization of CMC turbine vane designs

Success criteria: mechanical and thermal stresses reduced by 10%; increase overall cooling effectiveness by 0.05 relative to baseline

Task 4: Development of new SiC precursor chemistries

Success criteria: demonstrate that new precursors have equivalent or better material properties than SiC formed through traditional methods

Task 5: Integrate SiC precursor chemistry into AM process

Success criteria: project team is able to deliver a baseline vane part for transonic cascade testing using new SiC/SiC chemistry

Task 6: Fabricate and test optimized vane with SiC/SiC chemistry

Success criteria: project team obtains surface temperatures on optimized AM vane and shows overall cooling effectiveness increase relative to baseline

The project schedule is designed to produce improved airfoil cooling geometries and chemistries at regular intervals throughout

20	019 2020			2021				2022					
()3 (Q4 (<u>)1 (</u>	<u>)</u> 2 (<u>)3</u>	Q	<u>4 (</u>	Q1 (<u>)</u> 2 (<u>)3 (</u>	<u>)4 Q</u>	<u>p1 C</u>	<u>2 Q</u>
		Yea	ar 1				Yea	ar 2		Year 3			
	Q1	Q2	Q3	Q4	Q	25	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Task 1 - Pi	oject	Mana	ageme	nt an	d F	Plan	ning						_
1.1 Update project management plan, assess													
risk, assess project resources													
1.2 Planning meetings/monthly					Π								
teleconferences													
Task 2 – Fabrication	and	Testin	g of S	iOC/S	SiC	C Pr	ototy	pe Va	ne				
2.1 Design of a baseline vane geometry													
2.2 – Process characterization and fabrication of													
baseline vane geometry													
2.3 Aerothermal testing of baseline vane		1											
Task 3 – Modeling and	Opti	mizati	on of	СМС	Τı	urbi	ne Va	ane D	esigns	5	•	•	-
3.1 Topology and morphology optimization for					Π								
enhanced mechanical resilience													
3.2 Topology and morphology optimization for													
cooling design													
3.3 Coupled cooling and resilience optimization					Π								
for vane design													
Task 4 – Precursor Developm	Task 4 – Precursor Development and Optimization of New Resins for SiC Matrix												
4.1 – Develop new precursor resins for					Π								
advanced matrices													
4.2 – Characterization of materials in composites													
and during pyrolysis													

The project schedule is designed to produce improved airfoil cooling geometries and chemistries at regular intervals throughout

20)19	19 2020				2021				2022			
()3	Q4	Q1	Q2	Q	3	Q4 (Q1 (Q2 (<u>23 (</u>	<u>)4</u> Q	1 Q	<u>2 Q</u> 3
		Y	ear 1				Ye	ar 2		Year 3			
	Q1	Q2	Q	3 (Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Task 5 – Integrate S	SiC P	recui	sor (Chen	nist	ry in	to AM	Proc	ess				
5.1 Engineering of AM process for SiC													
precursor													
5.2 – Fabrication of baseline test vane using SiC													
matrix													
5.3 Aerothermal testing of baseline vane with													
SiC/SiC													
Task 6 – Fabricate and	Test	Opti	mize	d Va	ne v	vith S	SiC/Si	C Che	mist	у			
6.1 Fabricate thermomechanically optimized													
vane													
6.2 Perform aerothermal testing of optimized													
vane													

The project has several milestones that will be tracked for progress, with annual updates to the airfoil test articles

Task/ Subtask	Milestone Title & Description	Planned Completion	Actual Completion	
2.1	M1: Baseline cooled vane design complete	Feb 2020	Feb 2020	
2.2	M2: Fabrication of baseline cooled SiOC/SiC vane complete	Dec 2020		
3.1	M3: Topology optimization code for mechanical loading complete	Dec 2020		Shifted due to COVID
4.1	M4: First generation SiC precursor chemistry delivered from PSU to UWYO	Dec 2020		
3.2	M5: Topology optimization code for thermal stress/cooling complete	Aug 2021		
4.2	M6: Detailed property characterization for SiC precursor complete	Aug 2021		
5.2	M7: Fabrication of baseline cooled vane with new chemistry complete	Aug 2021		
5.3	M8: Comparison of SiOC/SiC to SiC/SiC vane temperatures	Nov 2021		
6.2	M9: Comparison of baseline SiC/SiC vane temperature to optimized design	Aug 2022		PENN

Color key: process engineering, material development, modeling, validation of cooling technologies

Task 2.1: The test article will be a NASA C3X vane geometry; the adjacent vane hardware design and fabrication was completed including capability to test a cooled CMC airfoil

Task 2.1: The vane assembly will be tested in a new high speed cascade facility at Penn State capable of relevant Mach and Reynolds numbers, as well as cooled air capability

assembly without CMCs Mach = 0.9 0.8 P/P₀^{0.6} 0.8 0.4 CFD Vane 3 0.2 Vane 4 0.6 Vane 5 Y/Pitch 0 0.2 0.6 0.8 0.4 0 1 0.4 Mach = 1.1 0.2 P_t Probe 0.8 -P_t CFD P/P₀^{0.6} 0 0.9 1.1 0.7 8.0 1 P/P_{t,in} 0.4 CFD Vane 3 0.2 Vane 4 PENN STATE Vane 5 0 0.6 0.8 0.2 0.4 0 x/C_{ax}

Task 2.1: Aerodynamic measurements have been taken to benchmark the cascade and vane

12

Task 2.1: We are developing infrared temperature sensing procedures as well as total pressure measurement procedures to characterize the CMC airfoil performance

Infrared camera in facility

Example images (not CMC vanes)

-300

-0.2

1.2

1.4

-0.2

1.2

1.4

-0.2

1.2

1.4

0.75

Total pressure field

Task 2.2: Parametric studies are being conducted on the original pre-ceramic resin formulation ("EA Resin") to attempt to optimize ceramic yield and reduce shrinkage

PEGDA/VMS ratio variation

EA Resin	Wt%
PEGDA	49.5
VMS	49.5
Photo-Initiator	0.3
Free Radical Scavenger	0.7

Self-crosslinking with thermal post-cure

Type II 🕵 🖣 🌾 Type III 🎪 🖡 💏

Task 2.2: The impact of layer thickness and orientation on strength is being tested for both the pre-ceramic polymer and the pyrolyzed material

UNIVERSITY OF WYOMING

Task 2.2: We have investigated structure design for best resolution and limited cracking, with some constraints on achievable post-pyrolysis size due to high shrinkage

Octet lattice design

Honeycomb design

CMC sandwich design

Task 3.1: Estimates of internal coolant forces and external aerodynamic forces were applied to FEA models of the airfoil, using early mechanical properties that need to be refined

Modulus	52.8 GPa	± 1.87 GPa
Failure Stress (4pt Bend)	54.15 MPa	± 5.51 MPa
Displacement at Failure	145 μm	± 19 μm
Failure Strain (FS/Modulus)	0.0103	

Task 3.1: Parametric studies are being conducted on the vane internal structure to guide design choices and determine sensitivities

UNIVERSITY OF WYOMING

Task 3.1: Parametric studies are being conducted on the vane internal structure to guide design choices and determine sensitivities

Task 4.1: Several new resin formulations were developed using acrylate siloxanes (SiOC) to attempt to increase ceramic yield and decrease shrinkage

Resin 10	wt%	Resin 16	wt%	Resin 28	wt%
VMS	38.6	VMS	35.71	Starfire 10	50
MAcrylPMS	40	HMS	35.71	DUDMA	25
AcrylOHMS	20	AcrylOHMS	27.45	PPGGDMA	25
PhTrimPO	1	PhTrimPO	0.26	PhTrimPO	0.3
ТМТВОНВ	0.3	TiCp2Cl2	0.04	ТМТВОНВ	0.7
Sic whiskers	0.1	SiC Whisker	0.82	TiCp2Cl2	0.195
Average shrinkage	26.1	Average shrinkage	25.2	Average shrinkage	23.2
Ceramic yield	39.7	Ceramic yield	48.4	Ceramic yield	48.3

Task 4.1: Extra processing steps are being investigated to increase ceramic yield, including thermal annealing (secondary cross-linking) and polymer infiltration processing (PIP)

Moai 130: Heated curing chamber

Thermogravimetric analysis with PIP

Task 4.1: Decorated SiC nanoparticles can remain indefinitely suspended in resin but impact optical density; much higher particle loading is being investigated in polysilazanes (SiN)

0 min 60 min 100 min 24 hr

Resin 10	wt%	Resin 28	wt%	EA Resin	wt%	Durazane Resin	wt%
VMS	38.6	Starfire SMP-10	50	Gelest VMM-010	49.5	Merck durazane 1800	65.0
MAcrylPMS	40	DUDMA	24.5			DUDMA	21.7
AcrylOHMS	20	PPGDMA	24.5	PEGDA	49.5		
PhTrimPO	1	PhTrimPO	0.3	PhTrimPO	0.3	PhTrimPO	0.3
ТМТВОНВ	0.3	ТМТВОНВ	0.7	ТМТВОНВ	0.7	ТМТВОНВ	0.8
SiC whiskers	0.1					20nm Si3N4 particles	4.3
Average shrinkage	30.3 (±4.7)	Average shrinkage	25.6 (±1.8)	Average shrinkage	33.6 (±4.2)	Average shrinkage	34.8
Ceramic yield	40.9 (±1.1)	Ceramic yield	51.4 (±2.6)	Ceramic yield	34.6 (±4.9)	Ceramic yield	49.3
Ceramic composition	Not measured	Ceramic composition	Si ₁ N _{0.07} C _{1.5} O	Ceramic composition	Si ₁ C _{6.5} O _{1.1}	Ceramic composition	Awaiting results

Task 4.1: Investigations are also being conducted on alternate manufacturing methods, including Direct Ink Writing with extremely low shrinkage but reduced resolution

Continuous Liquid Phase

Direct Ink Writing

Resin 54	wt%	Average shrinkage	5%
SiC (micron)	72.0	Ceramic yield	98.2%
SMP-877	22.5		
TiCp ₂ Cl ₂	0.04		
chloroform	5.4		

Our tasks over the next year will be to test an initial airfoil design, develop the topology optimization tools and PDC chemistries, and produce a revised design by next year end

Task 2 (PSU):

- Incorporate cooled airfoil and measure surface temperature (IR) and aero performance (PIV)
- Co-develop new cooling designs with UWYO

Task 2 (UWYO):

- Produce first test airfoil part
- Characterize material properties
- Co-develop new cooling designs with PSU

Task 3 (UWYO):

- Refine structural topology optimization code for internal supports
- Start developing thermal topology optimization tool

Task 4 (PSU):

- Continue to investigate methods for high particle/whisker loading and long term suspension
- Explore interlayer linking processes (thermal post-processing?) to improve part strength

Color key: process engineering, material development, modeling, validation of cooling technologies

In conclusion, we have capability to print and test articles but have more work on increasing ceramic yield and particle loading, as well as design of optimal shapes

Test prints show good control of internal features with proper support

Novel design tools for shape optimization are being built

High ceramic yield and particle loading are being systematically investigated

High speed cascade test facility is benchmarked and ready for tests

Appendix

We expect financial and schedule risks will be easily manageable with outlined research plan

	Risk Rating					
Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy		
	(Low	, Med, High)			
Financial Risks:						
High cost for polymer precursor materials (Task 2, 4, 5, 6)	Low	Med	Low	Fewer extra test parts will be produced and materials will be conserved.		
Cost of vane test hardware is high (Tasks 2.3, 5.3, 6.2)	Low	Low	Low	Fewer extra test parts will be produced, or will be sourced through lower-cost vendors.		
Schedule Risks:						
Unable to schedule time in transonic testing facility (Tasks 2.3, 5.3, 6.2)	Low	Low	Low	There is plenty of buffer in schedule to account for conflicts with other facility users		
Shape optimization tool development takes longer than planned (Task 3.1-3.3)	Low	Low	Low	Existing structural optimizers can be used as a backup, or a design can be developed manually and model can be validated with that design.		
Novel SiC precursor material development takes longer than planned (Task 4.1)	Med	Low	Low	Intermediate precursor recipes can be provided early to build expertise.		

There are some technical risks for this low-TRL project but high payoff if the technology is successful

	Risk Rating		-				
Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy			
	(Low	, Med, Hig	h)				
Technical Risks:							
Unable to fabricate cooled SiOC CMC vane with large internal cavity (Task 2.2)	Low	Med	Med	UWYO has fabricated turbine-like test parts previously, but if thin walls are an issue, can resort to thicker walls. If film cooling is a problem, can be removed from design without impact to technical goals.			
Unable to integrate new SiC material into SLA process (Task 5.1)	Low	Med	Med	3D printable variants of the SiC precursor formula would be investigated although may not have the same desired material capabilities of SiC.			
Unable to fabricate optimized vane shape using SiC/SiC (Task 6.1)	Med	Low	Low	This risk is avoided early by creating intermediate test prints as novel designs are developed, so that final design fits within manufacturing constraints.			
Management, Planning, and Ov	ersight Risks:		-				
None				Organizational team is collaborative and all PI's have management experience.			
ES&H Risks:			-				
None				Co-PI's have expertise and facilities to handle volatile chemicals and hot furnace objects.			
External Factor Risks:	•						
None identified							

