Development of Enabling Technologies for Chemical Looping Combustion and Chemical Looping with Oxygen Uncoupling

DE-FE0029160

Kevin J Whitty University of Utah

JoAnn S Lighty Boise State University

NETL Transformative Power Generation Project Review Meeting 28 September 2020

Project Summary

- Overall goal: Advance chemical looping combustion (CLC) and CLOU technology towards higher TRL
 - Meet DOE targets of at least
 - 90% CO₂ capture
 - 95% CO₂ purity
 - Reduce operating costs
 - Improve performance and reliability
- Scope:
 - 5 sub-projects (tasks)
 - Focus on industrially-relevant issues
 - Combine modeling, lab-scale studies, pilot tests
 - Use U Utah CLC PDU as test bed

Scope of Project / Focus Areas

Alignment with NETL/DOE Goals

ACS Program and FOA Objectives:

- Develop enabling technologies that address challenges with advanced combustion
- Improve the overall economics ensuring that performance and cost potential are substantially better than today's baseline pulverized coal power plant with postcombustion capture
- Support advanced combustion technologies by addressing critical technology gaps and improving overall system performance

Suggested research topics from FOA:

- Oxygen Carrier Improvement
- Gas/Solid Management
- Solids Separation
- Reactor Design
- Heat Management and Integration
- Sulfur Management
- Oxygen Carrier Regeneration
- Oxygen Carrier Manufacturing

Current Status of Project

Progress

- Lab-scale and modeling work mostly complete
- Verification in PDU ongoing
- Disruption this year due to COVID-related lab shutdowns
- On-track to meet performance benchmarks for CO₂ capture
- Changes in goals/objectives
 - Minor changes in research approach for some tasks
- Project update and new results on following slides

Technical Area 1: Development of Zero-Loss Oxygen Carrier Processing

- Objective: Minimize make-up oxygen carrier requirements
- Three causes
 - 1. Loss of activity by reactions with coal ash creating new compounds
 - 2. Loss of activity due to agglomeration
 - 3. Loss of material through attrition and/or carryover
- Approach
 - 1. Modeling of solid-phase chemistry in reactor
 - Understand risk regimes
 - Propose methods to alleviate Cu deactivation
 - 2. Development of process to recover and recycle active metal (Cu)

OF UTAH

7

OC Recycle – Leaching Studies

- 60 percent of PRB Black Thunder ash is leachable in nitric acid
 - 10% of the acid leachable fraction can be removed by water
- Dissolution of Illinois #6, Utah Skyline coal ashes is somewhat less
 - Conversion plots still resemble those of PRB ash (figure)
- Significant difference in conversion at 5 min
 - Approx 60% of PRB ash
 - Less than 10% of CuO removed
 - Ash more reactive → can remove ash into the aqueous phase with little CuO loss

OC Recycle – Leaching Studies

UNIVERSITY of UTAH

- Selective leaching of CuO from ash is viable – though 100% separation is not
 - Some impurities will be present in the Cu(NO₃)₂ leachate
- Many impurities improve carrier performance
- Less deactivation than pure CuO carrier
- Very consistent reduction reactivity
- Relatively high reduction rate

Reduction conversion for a 30% CuO carrier containing

*Impurities include low concentration CaO, Fe₂O₃, Na₂O, etc.

OC performance does not worsen after adding impurities → low cost recycle viable

Conceptual Design of Pilot-Scale System

- Continuous vat leaching (CVL) best option
 - Consistent outlet properties
 - Flexible easily accommodates different batches of waste solids
- 50 kg/day of semi-continuous operation
- Design also suitable for industrial scale

- Data from leaching studies will aid in deciding flow rates and vessel size
- Final Cu(NO₃)₂ stream will contain some impurities (subtask 2.2)
- Moderate Ca(OH)₂ addition will improve OC performance

Technical Area 2: Solids Transfer and Separation

- Objective: Improve performance through better control of particle circulation and gas-solid separation
- Loop seal design
 - Evaluate alternate designs
 - Consider gas environment
- Alternative gas-solid separation
 - Other cyclones
 - Disengagers
 - Ash/carrier particle separation

Tracking Loop Seal Fluidizing Gas

Need to keep OC oxidized until

 \geq

UNIVERSI ^{of} UTAH

 Track flow of air (CO₂) introduced through loop seal

entering FR

 Config 2 keeps OC oxidized while limiting O₂ in FR

Effectiveness of Ash/Oxygen Carrier Separation

Ash = 5-20 μm, OC = 100-200 μm

Separator	OC Recycle Efficiency	Ash Removal Efficiency	
Cyclone	99.99%+	44%	
Disengager – Large	99.99%+	68%	
Disengager - Small	99.99%+	71%	

The amount of OC circulating through the FR is much higher than the amount of ash, which allows for the disengagers to still maintain a high efficiency

Is Erosion a Concern?

Cross section of velocity magnitude (m/s)

High erosion areas are shown in red

- Erosion is proportional to impact angle and impact velocity.
- Because of the low speed due to the area expansion in the disengager, erosion is not significantly worse than in the cyclone

Technical Area 3: Improved Chemistry and Reactions in Simulations

- Led by Reaction Engineering International
- Heterogeneous chemistry
 - Coal devolatilization:

(raw coal) $\rightarrow Y_{vol}$ Volatiles + (1– Y_{vol})Char

• Char oxidation:

 $C + [(1+\psi)/2]O_2 \rightarrow \psi CO_2 + (1-\psi)CO$

• Oxygen carrier reduction and oxidation:

 $\mathrm{Me_xO_y}\,\leftrightarrow\,\mathrm{Me_xO_{y-1}}\,+\,\%\,\mathrm{O_2}$

- Development and implementation of sulfur reduced mechanism
- Task completed

Reaction	Reaction Stoichiometry
Combustion of	$2CO+O_2 => 2CO_2$
carbon monoxide	ζ ζ
Forward water-gas shift	$CO+H_2O => CO_2 + H_2$
Reverse water-gas shift	$CO_2 + H_2 => CO_2 + H_2O$
Combustion of hydrogen	H ₂ +0.5O ₂ => H ₂ O
Combustion of methane	CH ₄ +2O ₂ => CO ₂ +2H ₂ O
Combustion of coal	$C+O_2 => CO_2$
Copper decomposition	2CuO => 0.5O ₂ + Cu ₂ O
Copper oxidation	$Cu_2O + 0.5O_2 => 2CuO$

Technical Area 4: Heat Management and Integration of Reactors

- Objective: Evaluate heat extraction from CLC system considering steam generation for power generation in large-scale systems
- Approach
 - 1. Computational modeling of heat balance in the air reactor/fuel reactor system as well as steam and power generation in a CLC-based power plant
 - 2. Experimental evaluation and measurement of heat transfer to tube banks/heat panels in PDU
 - 3. Simulation of heat transfer with experimental data for validation

Convergence criterion: T_{AR,calc.}=T_{AR}

Modeling of Reactor Heat Balance

UNIVERSITY

Simulation of Heat Removal in AR

- Heat extraction somewhere in reactor necessary for temperature control
- Freeboard (top) versus dense bed region (bottom)
 - Inconsistency of particle contact in top results in unstable and inefficient heat transfer
 - Bottom of bed has higher heat transfer coefficient and yields more stable temperatures
 - PDU tests include both top and bottom locations for validation
- Parametric studies of heat removal versus operating conditions

Technical Area 5: Evaluation of Novel Dual Bed/Dual Carrier CLC Reactor

- Objective: Investigate performance of alternative reactor for CLC and CLOU
- > Two-carrier fuel reactor
 - Char reactor
 - Coal fed onto top of char reactor
 - Take advantage of O₂ release of CLOU carrier to convert unreactive char in one reactor
 - Volatiles reactor
 - Situated above/downstream of char reactor
 - Use conventional low-cost CLC carrier to convert volatiles
 - Two oxygen carrier cycles and air reactors
- Approach
 - Reactor simulation and process modeling
 - Experimental evaluation in small fluidized beds

Dual-FR CLC Reactor Design Evaluation

- Computational modeling
 - Distribution of volatiles and char
 - Fuel conversion in CLOU reactor
 - Heat/energy analysis
- Experimental tests
 - Coupled fluidized bed reactors
 - Product gas from first reactor fluidizes second reactor
 - Batch tests with coal/coal char

Project Accomplishments

- Better understanding and predictability of oxygen carrier/ash interactions
 - Good agreement between models and experiments
- Effective separation of Cu from spent oxygen carrier
 - No reduction in oxygen carrier properties
 - Promising for minimizing loss and improving economics
- Improved operation of loop seals
 - Minimize premature O₂ release of CLOU carriers
- New disengager-based solid separation system developed
 - Separates OC from ash
- Improved chemical reactions in simulations
- Heat management/reactor temperature control scheme identified

Supports DOE strategic goals

Attaining the Next TRL

For Overall CLC / CLOU technology (to TRL 6)

- More experience needed at PDU scale
 - Reliable startup and operating procedures
 - Stable, controllable operation
 - Ability to recover from upsets
 - Fail-proof temperature control
 - Long-term operation
- Oxygen carrier development
 - Affordable
 - Able to be produced economically at large scale (> 10 tons)
 - Desirable properties (physically robust, reactive, high oxygen capacity, lifetime)
- Strong economic motivation necessary
 - 45Q not sufficient
 - Requires government support for economic risk mitigation
 - Partner with Europe and China

Timeline for Technology Development

Fluidized Bed Chemical Looping Combustion

	Completed		Ongoing	Future work; out-of-scope		
	2006	2016	2020	2024	2027	2030
сгол	Fundamen	ntals to PDU		End of FE0029160		
	TRL 2 to 5					
		T	his Project			
			TRL5			
				Pilot Dem	ommercial	
				TRL6 1	RL7 TRL	8 TRL9

Wrap-Up

- 5 technical tasks aimed at improving performance/economics of CLC/CLOU
 - 3 of 5 tasks involve technology development
- Sub projects with new tech development increasing TRL
 - Oxygen carrier recycle: initial 2, current 3-4, project 4
 - Solids management: initial 2, current 3, project 4
 - Dual bed/carrier system: initial 2, current 3, project 4
 - → These address critical needs to improve competitiveness of CLC
- Fluidized bed CLC expected to remain at TRL 5 for several years
 - Much to be learned at industrially-relevant conditions
 - Operating hours, experience, troubleshooting, optimization needed
 - Need for large-scale, affordable oxygen carrier production
 - Need strong motivation for companies to invest in CO₂ capture