

Nanocomposite Surface Treatment for Energy Efficiency Improvement in Coal Fired Condensers

Principal Investigator: Matthew Nakatsuka, PhD CONTRACT NO: DE-FE0031533 U.S. Department of Energy National Energy Technology Laboratory Dr. Venkat Venkataraman, NETL Project Manager Wednesday, September 30th, 2020

Project Objectives

Improve the efficiency and reliability of existing coal-fired power plants through gains in condenser operation.

- Develop a widely adaptable system capable of in-place installation with minimal disruption or specialized equipment.
- Reduce maintenance requirements through prevention of biofouling.
- Improve heat transfer performance / rate of condensation.
- Decrease carbon emissions through reductions in fuel use.

Impact of Fouling on Condenser Performance

- Fouling can cause 2 5% efficiency loss in power plants
- 0.25% of Industrialized GDP lost due to fouling
- 2.5% of industry carbon emissions due to fouling losses
- Condensers tightly connected to overall plant efficiency

Heat Transfer Efficiency Gains = Fuel Savings & Generation Capacity.

Technology Alternatives

Technology	Limitation		
Increase Frequency of Cleaning	Increased Downtime, Increased Maintenance Costs		
Chemical Treatment of Water	Environmental Regulations		
Ablative/Anti-Fouling Marine Paints	Effective at Corrosion Control but Limits Heat Transfer		
Retubing with Corrosion/Fouling Resistant Alloys	High Capital Expense Cost		
Surface Patterning/Texturing	Operational Durability, Application on Existing Equipment		

Oceanit Approach - HeatXTM

- Treatment vs. Traditional Coating
- Water-Based, Nontoxic
- No VOC
- Brine & Hydrocarbon Compatible
- Long Workability, Quick Curing

- Minimal Surface Preparation (NACE 4)
- Methods Variable based on Geometry (Spray, Micropigging, Dipping)
- Ambient Curing
- Fast Process, Minimized Downtime

Materials

Application

Benefits:

- Corrosion Protection
- Fouling Resistance
- Improved Heat Transfer
- Reduced Fuel Usage

Limitations:

- Temperature Limit of 450°F
- Cleaning Solvents

Services

- Plate & Frame
- Shell & Tube
- Plate & Fin
- Factory & Field Application

Current Project Status and Key Performance Benchmarks

Property	Milestone Target	Achieved	
Material Durability	Capable of lasting for multiple years under condenser conditions	Equal to or greater than epoxy in terms of durability, wear and abrasion resistance, chemical compatibility	
Material Performance - Fouling	Reduction in fouling – by biologicals, corrosion, etc.	Visible disruption in biofilm formation and adhesion, increased time between required cleanings 6-fold.	
aterial Performance – Heat Transfer hrough promotion of dropwise condensation in low-pressure steam conditions.		Droplets formed on treated surfaces roughly 100-fold smaller, leading to a maximum effective heat transfer coefficient 50% better in laboratory conditions.	
Material Application Application in-situ to actual condenser unit		Applied to key condenser unit in electric generation plant. Post-application, certified by NACE-qualified inspector	
Efficiency Improvement 0.5% improvement in condenser performance		Up to 10% improvement in condenser performance	
Economic Impact Significant effect on plant operations as determined by commercial partner		Virtual elimination of required annual maintenance, reduction in downtime by over 30 days.	

6

Project Updates

Project Development Flow

Laboratory Development

Necessary Benchmarks and Technical Challenges

- Coupon and Benchtop Studies
- Formulation Optimization
- Materials Performance in Simulated Conditions
- Application and Surface Preparation in Simulated Conditions

Industry Subscale Pilot Demonstration

Necessary Benchmarks and Technical Challenges

- Field Trials on Low-Risk Equipment.
- Performance in Actual Conditions
- Application and Logistics of On-Site, In-Place Techniques.
- Go/No-Go economic viability from industry partners

Full Deployment & Commercialization

Necessary Benchmarks and Technical Challenges

- Performance Guarantees for High-Risk Equipment
- De-risking through Pilot Case Studies
- In-Field Efficiency Data Collection for Long-Term Monitoring
- Long-Term Commercial Agreements with Coal Industry.

Industry Validation and Field Demonstration

- Approximately 2.5% tubes lost per year due to blockage (about 50 tubes per year, ~10% blocked prior to HeatX application)
- Generally see consistent decline in performance due to deterioration, corrosion/fouling, requires annual inspection/maintenance for blockage.
- Zero redundancy in system, no other condensers available per equipment group.

Industry Demonstrated Operational Improvements

- After treatment, condenser performed at the same duty load as a fully operational control condenser, even with 10% plugging.
- Zero tube leaks experienced in 8 months of operation, no plugging required.

- Treatment completed in 14 days, typical retubing/cleaning would take 45 days.
- Saved an estimated \$1M in yearly costs due to reduced downtime, maintenance, and improved condenser capacity.

HeatX[™] Efficiency Improvements

- Better Heat Transfer
 - HeatX allowed for nearly 3% more steam to be condensed over 8 months than before treatment.
- Lowered Temperature in Condenser
 - HeatX reduced operating temperature in condenser by 10°C.
 - HeatX also reduced temperature rise of cooling water by 5°C (significantly increased capacity).
- Lowered Pressure in Condenser
 - Not directly measured, but 10°C drop would result in condenser pressure decrease of ~0.09 psi.
- Overall Improvement in Condenser Efficiency
 - 0.09 psi backpressure reduction could increase output by 7%

Commercial Partner Targets

Large Scale Coal Plants > 2000MW Generation

Target: 1 Deployment on Secondary System

- Newer installations with fouling mitigation strategies in place.
- Risk averse, shutdowns/delays highly costly.
- Existing efficiency metrics and benchmarking.
- Significantly enhanced economic benefits due to capacity and plant load factor.

Small Scale Coal Plants < 200MW

Target: 3-4 Deployments on Primary Systems

- Older plants, often with planned shutdowns/sunsetting.
- More sensitive to high initial capital costs.
- Less capacity for cleaning (more likely to run in sub-optimal condition).
- Limited ability to collect efficiency data.

Developing Efficiency Metrics for Small-Scale Partners

- Maximize difference between Inlet Steam and Outlet Steam.
- Change of 0.2 In Hg backpressure ~ 7% efficiency drop observed.
- Decrease backpressure by increasing the rate of condensation.

Condenser Efficiency vs. Backpressure

To minimize backpressure:

- Lower temperature within condenser.
- Temperature Rise (TR): Measures heat absorbed by cooling water.
 - Terminal Temperature Differential (TTD): Measures thermal heat transfer efficiency.

Collection of Baseline Data in Future Implementation Sites

 TR, TTD, Backpressure and Heat Rate all related, must monitor all aspects to properly quantify efficiency improvements.

Reduced Temperature Rise – Heat Exchanger

Outfall temperature increase from coated exchanger about half as much at same power generation

Future Implementation Site – Baseline Data

	Optimal Performing	Target Condenser
	Condenser	(Fouled)
Capacity of Rated Performance	98.19%	85.93%
Condenser Vacuum (mm Hg)	-87.4	-85.65
Condenser Temperature (°C)	45.28	47.58
Condenser TTD (°C)	5.74	7.52
Cooling Water TR(°C)	8.95	11.08
Condensate Flow Rate (TPH)	340	296

- Combined Effect of Tube Blockage/Restriction & Fouling
- 1.75mm Hg backpressure increase results in a 3.6% heat rate penalty (increased kJ/kWh)
- Unit must be throttled back due to unacceptably high condenser temperature at full load.
- Currently cleaned every 6 months, extended shutdown every 2 years.

Efficiency Projections and Derisking for Large Systems

HeatX[™] Subscale Performance Modeling

Condenser Subscale Model – Sensor and Control Elements

Sensor Element	Description	Signal Control Element Description		
Water Heater Sub	system			
Temperature	Thermocouple at water heater heating element 1	Digital Out	Heating Coil	Digital controlled heating elements, tied to pressure in water heater
Temperature	Thermocouple at water heater heating element 2	Digital Out		
Water Temperature	Thermocouple in water heater	Digital Out		
Pressure	Pressure Transducer in headspace of water heater	Digital Out		
Water Level	Level sensor in water heater, Ultrasonic	Digital Out		
Water Level	Level switch in water heater	Display		
Steam Flow Subsy	stem			
Steam Flow	Flow sensor in piping connecting water heater to condenser (F Steam in)	Digital Out	Flow Control Valve	Digital Controlled, tied to pump tank level sensor
Steam Temperature	Thermocouple in piping connecting water heater to condenser (T Steam in)	Digital Out		
Condenser Unit Su	ıbsystems	·		
Condenser Pressure	Pressure transducer in condenser shell (P steam in)	Digital Out		
Condensate Temperature	Thermocouple in piping at condensate drain from condenser (T Condensate out)	Digital Out		
Chill Water Pressure	Pressure transducer at chill water inlet to condenser (P Chill Water in)	Digital Out		
Chill Water Pressure	Pressure transducer at chill water outlet from condenser (P Chill Water out)	Digital Out		
Chill Water Temperature	Thermocouple at chill water inlet to condenser (T Chill Water in)	Digital Out		
Chill Water Temperature	Thermocouple at chill water outlet from condenser (T Chill Water out)	Digital Out	VFD Pump Controller	Digital Controlled, tied to chill flow meter
Chill Water Flow	Flow sensor in chill water piping exiting condenser	Digital Out	Flow Control Valve	Digital Controlled, tied to chill flow meter
			Vacuum Pump	Manual Controlled
Condensate Recirc	culation Sub system			
Water Level	Level sensor in pump tank, Ultrasonic	Digital Out		
Condensate Flow	Flow sensor in piping connecting pump to water heater (F Condensate out)	Digital Out	VFD Pump Controller	Digital control on pump, tied to level sensor in pump tank

22

Condenser Subscale Model

Technical Outreach: Presentations & Publications

Completed thus far:

- 5 Technical Papers & Presentations
- 1 Hosted Technology Showcase at Offshore Technology Conference (Houston, TX)

Upcoming:

• 2021 NACE Corrosion (Salt Lake City Utah)

Technology To Market Plan

Market Benefits & Assessment

Key Gaps in Market Fulfilled by HeatX[™]

- Surface treatment is field-validated for performance and durability, ready for deployment with commercial partners.
- Material shipping logistics and qualified applicator partners established for commercial deployment.
- Economically significant savings for both generation (3-7% improvement) and operational maintenance (\$1M + per year).
- Suitable for multiple MOCs, form factors, temperature conditions and fouling environments.

Coal is only the Beginning

Industry: Power Generation Services: Sea Water, Steam Exchangers: Plate & Frame, Shell & Tube, Condensers

Industry: Petrochemical Refining Services: Crude Oil, Produced Water, Brine, Chemicals, Fertilizers Exchangers: Plate & Frame, Shell & Tube, Condensers Industry: Desalination, Water Treatment Services: Crude Oil, Produced Water, Brine Exchangers: Plate & Frame, Shell & Tube, Condensers

HeatX Effect on Decarbonization

- Direct effect on fuel consumption: efficiency gains allow for 3-7% reductions in fuel usage.
- Immediate deployment possible, economically advantageous for plant operators.
- Complement to standalone carbon capture technologies currently in development.

Carbon dioxide emission intensity at W.A. Parish Unit 8 (Jan 2016 - Jun 2017) pounds carbon dioxide per megawatthour

28

Summary & Concluding Remarks

- This project has demonstrated that field application of HeatX[™] can improve condenser performance by 3-7%, and can save millions in reducing required maintenance costs.
- Allows fossil energy power generation plants to become immediately cleaner, less costly to operate, more efficient, and more competitive with other fuel sources.
- Next steps are focused on:
 - Further modeling of expected gains for new commercial partners
 - Additional field demonstrations with entire plant output data collection
 - Enhancements in application technique for vacuum-side deployment

Acknowledgements

- Technology Manager
- John Rockey Program Managers
- Venkat Venkataraman
- Joe Stoffa
- Erik Albenze
- Greg O'Neil
- Contracting:
- Patrick Mayle
- Ashley Reichl
- Sue Miltenberger

Questions?

