Technology Maturation of Wireless Harsh-Environment Sensors for Improved Condition-Based Monitoring of Coal-Fired Power Generation

2020 Transformative Power Generation Project Review Meeting

VIRTUAL MEETING, September 30, 2020

Presenter: Mauricio Pereira da Cunha
mdacunha@maine.edu

Dept. of Electrical and Comp. Eng. and Lab. for Surface Science and Technology
University of Maine, Orono, ME, 04469, USA
Environetix Technologies Corp., Orono, ME, 04473, USA
September 30, 2020, 12:00PM
Outline

I. Program & Project Motivation, Goals, and Objectives
 a) Project Motivation & Purpose
 b) Project Goals & Strategic Alignment to Fossil Energy Programmatic Objectives
 c) How the Project has been Achieving the Goals Established by DOE HQ

II. Project Description & Recent Achievements
 a) Verification of surface preparation for antennas & connections
 b) Verification of SAW temp. sensor unit stability and consistency in power plant operation
 c) Design, Implementation, Testing: Wireless SAW Sensor Syst. for Boiler Tube Monitoring
 d) Design & Implementation of Wireless Signal extraction system for remote data gathering & compilation

III. Current Progresses & Next Steps
 a) Newly identified power plant problem and solution
 b) New technologies validation and planning for insertion in multiple power plants
 c) Identified Challenges and Mitigation alternatives

IV. Concluding Remarks
I. Program & Project
Motivation, Goals, and Objectives
I. Program & Project Motivation, Goals, and Objectives

a) Project Motivation & Purpose

➢ Consistent with original proposed project
 ✓ Contribute to improve performance of COAL based power plants:
 • ↑ Efficiency & ↓ emissions → Monitoring processes (boiler, plant chambers)
 • ↓ operation & maintenance costs → Monitoring plant (Cond. Based Maint., CBM)

➢ Coal power plants (aging) → coal usage
 ✓ ↓ since mid-2000s

➢ Variable Op. Maint (VOM) cost
 ✓ Higher than Natural Gas

I. Program & Project Motivation, Goals, and Objectives

a) Project Motivation & Purpose

➢ Why insist on COAL?

➢ USA → SIGNIFICANT SOURCE OF ENERGY FOR THE U.S.A.!

✓ 255.8 billion short tons: 21% of the world’s proven recoverable reserves of coal

✓ Above #: ONLY 6.5% of the potential total coal resources (identified & undiscovered)

➢ So what is missing?

• New advanced Technologies & Sensors ⇒

 ▲ PP efficiency; ▼ maint. Costs; ▼ emissions

Alignment with FOSSIL ENERGY PROGRAMMATIC OBJECTIVE:

• Develop cost-effective, reliable technologies to improve the efficiency of new and existing coal-fired power plants.
I. Program & Project Motivation, Goals, and Objectives

b) Project Goals & Strategic Alignment → Fossil Energy Program

➢ Usage of Harsh-Environment (HE) High-Temperature (HT) Wireless Sensor Technology Systems to

✓ Promote reliable maintenance through Condition Based Maintenance (CBM) of critical coal-based power plant equipment

✓ Promote cost-effective efficiency of power plant operations

➢ Increase the HE HT Wireless Sensor Technology Readiness Level (TRL) via test and implementation in Coal-based power plants:

✓ From current TRL-5 (Technology validated in relevant environment) to TRL-7 (System prototyped validated in an operational system)

or possibly

✓ TRL-8 (Actual tech. successfully commissioned in an operational system)
I. Program & Project Motivation, Goals, and Objectives

c) How the project has been achieving the goals established by DOE HQ

- Univ. of Maine in partnership with Environetix Technologies Corp.:
 - Collaboration with Power Plants: Testbed Identification & Target Locations within power plants
 - Investigation of Materials: Sensor Packaging & Antenna Fab. in Coal Power Plants
 - Implementation of Wireless Communication Systems in Power Plant Environment
I. Program & Project Motivation, Goals, and Objectives

c) **How** the project has been achieving the goals established by DOE HQ

✓ Fabrication and Test of Harsh Environment Sensors & Antennas in Power Plants

✓ Deployment of Embedded Wireless Temperature Sensors Arrays and Interrogators into Power Plants

✓ Investigation of Alternative Materials & Sensors for Integration into Developed Systems

✓ Consideration of Power Plant feedback and adjustment of sensor solution to power plant indicated needs
II. Project Description & Recent Achievements
II. Project Description & Achievements

Project Description

➢ UMaine & Environetix → following up on Wireless SAW technology validated in relevant environment (boiler tubes @ economizer section):

✓ TRL 5: Penobscot Energy Recovery Co (PERC), Orrington, ME

Municipal Solid Waste (MSW) Power Plant

➢ Steps taken → Technology verification at Longview coal-based power plant:

1. Material Tests ⇒ verification of surface preparation for antennas & connections
2. Verification of temp. sensor unit stability and consistency in power plant operation
3. Design & Implementation: Wireless SAW Sensor Syst. for Boiler tube Monitoring
4. Design & Implementation of Wireless Signal extraction system for remote data gathering and compilation
5. Investigation towards power plant sensor needs → alternative locations, sensor types and materials
II. Project Description & Achievements

Material Test: metallic plate coatings for antenna use in HT Environment

➢ 1. High Temperature (HT) coating of metallic surfaces to mitigate corrosion/erosion:

✓ Two sets of anti-corrosion & anti-erosion coatings tested in the NOx port in Selective Catalytic Reduction (SCR) inlet

- **Goal:** confirm plate performance for antennas @ HT
- Inconel plates → ↑ $ ⇒ Steel cheaper & easier to work
- Commercial & proprietary coatings on low-carbon steel:
 - 1st Test: visual inspection → corrosion resistant; sealant removed due to erosion
 - 2nd Test: antenna plates → DC & RF (PIFA antenna top plate) before & after tests → performance maintained for all protective coatings; sealant still removed due to erosion

- Tests shown performed at Longview Power
- Similar test was also carried out at PERC
 - Comparable erosion / corrosion
II. Project Description & Achievements

UMaine Steam Power Plant → SAW Sensor Probe in Natural Gas Fired Boiler

➢ 2. Verification of sensor unit stability & consistency ➔

➢ Test of materials, signal propagation, sensor stability, data acquisition techniques, and resilience of packaging techniques → performed prior to and in preparation to the planned Longview Tests

Confirmed correlation between generated steam and measured SAW sensor temperature
II. Project Description & Achievements

Longview: SAW Temp. Sensor Probes in Superheater Pass Damper Chamber

➢ 2. Verification of sensor unit stability & consistency →

➢ Two SAW sensor probes with ref. thermocouples mounted in Superheater Pass Damper Chamber

➢ Inserted in 138” long Longview probe through two access ports into superheater chamber

- Mounted SAW sensor
- Sensor packaged in 6” long closed tube
- Sensor probe integration with Longview fixture
- Probe insertion
- Access ports for the two probes
- Environetix Measurement Systems for Wireless Remote Monitoring
II. Project Description & Achievements

SAW Temperature Sensor Probes in Superheater Pass Damper Chamber

➢ Ongoing test → Current status →

➢ Both probes functional after 18 months of continued exposure to flue gases

➢ Data being recorded remotely onto secure server ⇒ allows identification of power plant states:

✓ Base-loaded state
✓ Demand fluctuation
✓ Shutdown event

Verified temperature change with boiler demand

Consistent temperature readings between Env/UMaine SAW sensor & Longview Superheater TC
II. Project Description & Achievements

Deployment of Wireless SAW Temperature Sensor Array in Boiler Tubes

3. Design & Implementation: Wireless SAW Sensor Syst. for Boiler tube Monitoring

✓ 18 wireless sensor units installed on Longview boiler tubes in the reheater pass damper chamber
✓ 3 interrogating antennas mounted on trusses (3 sets)
 • 18 sensor units (sensor + sensor antenna) mounted directly on the boiler tubes
✓ Sensor locations distributed to:
 • Maximize boiler coverage
 • Allow monitoring for half of the chamber
Deployment of Wireless SAW Temperature Sensor Array in Boiler Tubes

3. Design & Implementation: Wireless SAW Sensor Syst. for Boiler tube Monitoring

- Temperature monitoring of boiler tubes → 400 °C ± 20 °C
- Identification of power plant states:
 - Base-loaded state → (I), (III), (V)
 - Demand Fluctuation → (II)
 - Shutdown event → (IV)
- Data being recorded remotely onto secure server
- Sensors operational after 16 months of continued exposure to flue gases
II. Project Description & Achievements

Steam Power Plant: Remote Wireless Data Acquisition System

✓ Environetix established a wireless sensor network data acquisition system →

• Capable of HT data acquisition & monitoring from anywhere in the world (local wireless, LAN, cel network)

<table>
<thead>
<tr>
<th>Location</th>
<th>Frequency (MHz)</th>
<th>Band</th>
<th>Bars (out of 5)</th>
<th>Signal strength (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West entrance</td>
<td>1700</td>
<td>4</td>
<td>4</td>
<td>-97</td>
</tr>
<tr>
<td>Building center</td>
<td>1700</td>
<td>4</td>
<td>4</td>
<td>-100</td>
</tr>
<tr>
<td>East wall</td>
<td>850</td>
<td>5</td>
<td>4</td>
<td>-95</td>
</tr>
<tr>
<td>East wall</td>
<td>700</td>
<td>13</td>
<td>3</td>
<td>-97</td>
</tr>
<tr>
<td>East window</td>
<td>850</td>
<td>5</td>
<td>3</td>
<td>-102</td>
</tr>
<tr>
<td>South wall</td>
<td>850</td>
<td>5</td>
<td>4</td>
<td>-101</td>
</tr>
<tr>
<td>North wall</td>
<td>700/850/1700</td>
<td>4/5/13</td>
<td>4</td>
<td>-96</td>
</tr>
<tr>
<td>Probe location</td>
<td>850</td>
<td>5</td>
<td>4</td>
<td>-101</td>
</tr>
</tbody>
</table>
II. Project Description & Achievements

Longview: establishment of Remote Wireless Data Acquisition & Monitoring Syst.

✓ Local Area Network (inside plant) & Wireless Network → Remote Wireless data collection
 • TX from WV to ME/Environetix (data can ALSO be transmitted & monitored locally/control room)
✓ Two data acquisition (DAQ) stations → SAW probes, SAW boiler wireless, witness TCs

• NO EXTRA WIRES IN THE PLANT → cost ↓ & safety ↑
III. Current Progresses and Next Steps
III. Current Progresses and Next Steps

Burner Temperature & Fire monitoring

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials

➢ Burner temperature & fire monitoring → currently have no instrumentation

✓ Longview → emphasized → need for temperature instrumentation @ burner locations

✓ Coal dust / HT / air flow → localized fire →
 ✓ Equipment damage
 ✓ Dow time
 ✓ Maintenance cost ↑

✓ Instrumentation under development → preventive
 ✓ Structural health monitoring (SHM)
 ✓ Condition-based maintenance (CBM)

✓ Environetix/UMaine system under development → wireless data collection → control room
III. Current Progresses and Next Steps

UMaine Steam Power Plant → Prep. For Longview

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials

➢ UMaine Steam Power Plant Testbed →

✓ Furnace instrumentation for Wireless monitoring prior to working on Longview burner

✓ Testbed → oil fired boiler → current NO instrumentation
III. Current Progresses and Next Steps

UMaine Steam Power Plant → Prep. For Longview

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials
➢ UMaine Steam Power Plant Testbed → oil fired boiler → current NO instrumentation

✓ Goal: furnace instrumentation for Wireless monitoring prior to working on Longview burner
✓ Tested TCs: data recorded logged wirelessly
✓ Events:
 • Burner lit up (ON) & induced draft (ID) fan turned on → 320 mins
 • Forced draft (FD) fan turned on → 327 mins
 • Burner turned off (OFF) → 344 mins
✓ Boiler is scheduled to be online for normal operation in October 2020
Alternative Sensor Types → Static and Dynamic Strain Sensors

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials
➢ Static and Dynamic strain sensors → Need for HT HE strain sensors to allow
- Allow planned maintenance → ↓ in maintenance & repair costs → SHM & CBM in power plants
- ↑ in process efficiency
- ↑ in safety

➢ Static Strain
- Monitor structure deformation
- Identify weakening in structures due to corrosion, excessive stress, improper operation, etc.

➢ Dynamic Strain
- Monitor structural health for equipment, machinery and structures subject to vibrations
- Monitor loads on vibrating structures.
III. Current Progresses and Next Steps

Alternative Sensor Types → Static and Dynamic Strain Sensors

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials

➢ UMaine/Environetix → Successful proof-of-concept →
 ✓ Static & Dynamic HT strain sensors
 ✓ Laboratory work → performed up to 400°C
 ✓ Wireless interrogation of strain sensors successfully achieved

➢ Static Strain
 ✓ SAW sensor mounted on a constant stress beam
 ✓ Calibration performed
 i. Abaqus finite element analysis model
 ii. Commercial HT strain gauge (temp. range for calibration identified)
III. Current Progresses and Next Steps

Alternative Sensor Types → Static Strain Sensors

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials

➢ Wireless static strain measurements lab results
 ✓ Wireless SAW sensor tested to 180µε and 250°C ➔ ➔
 ✓ Abaqus used for calibration in this temperature range
 ✓ Packaging & mounting →
 • Sensitivity vs. max temp. of operation compromise identified
 ✓ Identified sensitivities at 24°C, 100°C and 200°C
 • -182 Hz/µε, -146 Hz/µε, and -133 Hz/µε, respectively.
 ✓ Temperature compensation should be included
 ✓ Packaging for technology application in power plant under design.

Fizzah et al, IEEE Int. Ultr. Symposium (Virtual Conference), Sept. 2020
III. Current Progresses and Next Steps

Alternative Sensor Types \rightarrow Dynamic Strain Sensors

- 5. Power plant sensor needs \rightarrow alternative locations, sensor types & materials

- Wireless dynamic strain \rightarrow laboratory tests
 - Wired and wireless tests \rightarrow up to 400°C in box furnace
 - Tapered-edge constant stress beam employed
 - Attached by steel rod clamped at the back of the furnace \rightarrow thus suspended freely in the furnace
 - Excited by a vibration generator that was mounted outside of the furnace using a stainless-steel drive arm
 - SAW sensor, witness TC & commercial strain gauge mounted
 - Vibration generator provides dynamic strain signal up to several hundred Hz.
III. Current Progresses and Next Steps

Alternative Sensor Types → Dynamic Strain Sensors

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials

➢ Wireless dynamic strain measurements lab results
 ✓ Wireless SAW sensor data obtained from 25°C to 400°C
 • Calibration performed with commercial gauge
 • Dynamic strain signal at 500Hz from about 9µε to 33 µε
 • From relative sidelobe power to main SAW resonant peak power, \(\Delta P_{SAW} \rightarrow \) equivalent sidelobe voltage, \(V_{SB}^{SAWR} \)
 ✓ Sensitivity found to be temperature dependent
 ✓ Temperature compensation must be included
 ✓ Packaging for technology application in power plant under design.

Leff et al, IEEE Int. Ultr. Symposium (Virtual Conference), Sept. 2020
III. Current Progresses and Next Steps

Alternative Materials for Sensors → AlN-based Piezoelectric Thin Films

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials

➢ Few materials remain piezoelectrically active above 600°C
 ✓ Langasite (La$_5$Ga$_{0.5}$SiO$_{14}$) SAW sensors operate up to 1000°C → fab from single crystals

➢ Thin film AlN piezoelectric material
 ✓ Piezoelectric at HT & can be made as conformal thin films
 ✓ Higher phase velocity than LGS → higher frequency of operation
 ✓ Temperatures up to 800°C or above depending on operation and fabrication

➢ UMaine/Environetix
 ✓ Have been investigating AlN for HT power plant applications
 • commercially available & in house fabricated

[Graph showing piezoelectric coefficient d_{33} (pC/N) vs. Maximum use temp. (°C)]

- Langasite (LGS)
- Aluminum Nitride (AlN)
III. Current Progresses and Next Steps

Alternative Materials for Sensors → AlN-based Piezoelectric Thin Films

➢ 5. Power plant sensor needs → alternative locations, sensor types & materials

➢ Thin film AlN Plasma assisted MBA are being optimized
 ✓ Seed layer; O₂ in the chamber; T of growth; N₂ flux; etc.

➢ SAW resonator have been fabricated & tested up to 900°C
 ✓ Si₃N₄ interfacial layer → developed to enable photolithography of SAWR devices without etch damage to AlN thin film
 ✓ IDT HT electrodes under investigation

SAW AlN tested at 800°C

Plasma-Assisted Molecular Beam Epitaxy (PA-MBE) deposition chamber
III. Current Progresses and Next Steps

Current and next steps → General challenges HT HE tech transfer

➢ Challenging aspects of current and next steps in currently tech. transition TRL5 → TRL7/8

IDENTIFIED GENERAL CHALLENGES FOR HT HE SENSOR DEPLOYMENT IN POWER PLANTS

➢ Test possibilities & availability window is very limited to access HT environments:
 ✓ Once a year and sometimes rescheduled based on maintenance events & urgencies
 ✓ Difficulty in planning ⇒ very short notice (when such notice takes place)
 ✓ Mitigation: alternative power plants

➢ Regular HT HE conditions → RF signals → affected by different HE conditions
 ✓ Engineering solution still quite dependent on case by case engineering design input
 ✓ Shock in temp.; extreme variation of pressure/temp.; mismatch in TCE between parts
 ✓ Mitigation: proper coating, surface prep., packaging → address most erosive/corrosive situations

➢ Engage more power plants into TRL advancement to capitalize on new sensor technologies:
 ✓ Additional participation of power plants to gain access to the technology made available
III. Current Progresses and Next Steps

Current and next steps → Challenges for current activities & next steps

➢ Challenging aspects of current and next steps in currently tech. transition TRL5 → TRL7/8
➢ Overcome current investment/cost/travel restrictions during the pandemic situation
 ✓ Interactions & tech transfer depend on visits and in-situ exchange of information

SPECIFIC UMaine/Environetix’s PROJECT CHALLENGES AND NEXT STEPS

➢ Additional resources needed to extend HE solutions to Longview burner application:
 ✓ Learning curve from successful initial experiments at UMaine Steam Power plant needs to be adapted to coal-based Longview Power plant

➢ Further investment required for transitioning high impact newly identified HE technologies into power plants:
 ✓ Successful wireless strain sensor proof in laboratory → adaptation to power plant locations
 ✓ Thin film AlN commercial & in-house fab. → adaptation to power plant environment & applications
IV. Concluding Remarks
IV. Concluding Remarks

Summary

➢ Program & Project Motivation, Goals, and Objective reviewed ⇒
 ✓ Strategic Alignment to Fossil Programmatic Objective highlighted
 ✓ Path & strategy to achieve goals of ↑ TRL from 5 to 7 discussed

➢ Project status & recent achievements presented ⇒
 ✓ Protecting materials for antennas and verification tests;
 ✓ Verification of sensor stability in coal power plant for 18 months;
 ✓ Wireless SAW Sensor System installation & operation in Longview Boilers (16 months)
 ✓ Design and implementation of wireless signal extraction system for remote data gathering and compilation presented and discussed
IV. Concluding Remarks

Summary

➢ Current progresses and next steps ⇒ reviewed & discussed
 ✓ Identified Longview burner (fire/CBM) opportunity ⇒
 ✓ System under development & test at UMaine Steam Power Plant
 ✓ Static and dynamic strain sensors developed & wireless operation confirmed in lab.
 ✓ Thin film AlN commercial and in-house tested for SAW sensor HE HT applications

➢ General HE & project specific challenges presented ⇒
 ✓ Limited test windows;
 ✓ HT HE challenges (specific boundaries; shock in temp./pressure; TCE);
 ✓ Increase the number of stakeholders on the user side
 ✓ Investment required for implementation of newly identified activities burner, strain, and thin film solutions.
ACKNOWLEDGMENTS

• Work presented here is the result of intensive team work. The author would like to acknowledge all my co-authors, students, Environetix personnel.

• Current work involves a large group of people: Profs., scientists, supporting tech. staff, grad & undergraduate students, and industry: M. Pereira da Cunha1,2, R.J. Lad1,2, Anin Maskay1, M. Call1, G. Bernhardt1, Greg Harkay2, Suzie Sharrow2, and Seth Braun2

\begin{itemize}
 \item 1Frontier Institute for Research in Sensor Technologies, University of Maine, Orono, ME, U.S.A.
 \item 2Environetix Technologies Corporation, Orono, ME, U.S.A.
\end{itemize}

• Discussions, suggestions, and support involving our power plant collaborators listed next are greatly appreciated: (i) Jared Custer, Reliability and Performance Manager, and Anthony DelRio, Reliability Supervisor, from Longview Power Plant, Maidsville WV; (ii) Dick Kelley, PERC Compliance Officer, Doug Britton, Safety Manager, and Mike Mains, Technical Manager, from PERC, Orrington, ME; (iii) Michael Swartz, Energy and Utility Manager, Chuck Spalding, Plant Manager, Dan Curran, Plant Supervisor, and Mike Messier Plant Maintenance and Operation, from Steam Plant, University of Maine, Orono ME.

• The entire group would like to thank NETL, the support of the NETL/DOE personnel in Morgantown and Pittsburgh, in particular Barbara Carney, program officer, and John Rockey, Sydni Credle, Ben Chorpening, Patricia Rawls, and Briggs White for discussions, guidance and support during the project, technology transition and tests.
This work is supported by U.S. Department of Energy Award #: DE-FE0031550.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.