Oxy-Combustion System Process Optimization (Contract No. DE-FE-0029090)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Jerrod Hohman TDA Research, Inc.

Dr. Ashok Rao University of California Irvine

DOE-NETL's 2020 FE R&D Virtual Project Review Meeting – Transformative Power Generation

September 28, 2020

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Summary

- The objective is to optimize the Pressurized Oxy-Combustion (POxC) process to minimize the Cost of Electricity (COE)
 - System analysis and design work to optimize POxC process, including thermal management, heat integration, power cycle optimization using process design and modeling supported with Aspen Plus® process simulations
 - Develop a new chemical absorbent-based CO₂ purification system to remove the residual oxygen that contaminates the recovered CO₂
- Major Project Tasks
 - Sorbent Optimization and Evaluation
 - Performance validation via long-term cycling tests
 - Process, System Design and Modeling
 - Techno-economic analysis
 - Various configurations with different ASU and O₂ removal options
 - High fidelity engineering analysis and process simulation

Project Partners

Project Duration

- Start Date = October 1, 2016
- End Date = September 30, 2020

Budget

- Project Cost = \$1,375,042
- DOE Share = \$1,099,998
- TDA and UCI = \$275,044

Oxy-Combustion & Carbon Capture

- In oxy-combustion fuels is burned in O₂ instead of air, which results in a flue gas of primarily CO₂ with trace levels of impurities
- POxC reduces energy and capital costs of the equipment used to purify and compress the CO₂
- DOE/NETL objective is to optimize the POxC process to limit the COE increase to less than 20% over the no-capture case
- The main cost contributors to POxC process includes:
 - Air Separation Unit
 - CO₂ Purification system

	COE	Increase
	(\$/MWh)	in COE(%)*
NETL Non-Capture Ref., Air-fired SC w/o CCS	58.90	
NETL Base Case Current Technology	91.07	54.6
NETL Cumulative Technology Case	78.15	32.7
Proposed Goal	70.68	20.0

*Relative to the non-capture case

Source: Cost of Electricity for Low Pressure Oxy-Combustion Technologies (NETL 2012)

Air Separation Options

- ASU is one of the largest cost contributors to oxy-combustion (consumes over 5% of plant power and constitutes ~20% of plant cost)
- Cryogenic air separation is the choice of technology at large-scale
 - 600 MW plant requires ~170 ton O_2/day
- Cryo-separation is highly energy intensive due to the thermal inefficiencies inherent in the low operating temperatures
- **Alternatives**
 - Ion Transport Membranes
 - High TRL
 - Sorbent-Based Air Separation System (TDA Technology developed under DE-FE0026142)
 - Low TRI

Source: Air Products and Chemicals, Inc.

Process Optimization Case Matrix

Case	Power Cycle psig/°F/°F	Subsystem Concept Evaluated	Oxidant
1 (Base)	Supercritical Steam 3500/1100/1100	Current ASU – Cryogenic ASU	95% O ₂ , Cryogenic ASU
2	Supercritical Steam 3500/1100/1100	Advanced O ₂ Membrane with Preheat in Boiler	~100% O_2 , Advanced O_2 Membrane (Ion Transport)
3	Supercritical Steam 3500/1100/1100	Advanced O ₂ Membrane with Preheat by Natural Gas Combustion	~100% O ₂ , Advanced O ₂ Membrane (Ion Transport)
4	Supercritical Steam 3500/1100/1100	Advanced O ₂ Sorbent (TDA) with Boiler Heat	95%+ O_2 , Advanced O_2 Sorbent (TDA)
5	Supercritical Steam 3500/1100/1100	Advanced O ₂ Sorbent (TDA) with Natural Gas Combustion Heat	95%+ O_2 , Advanced O_2 Sorbent (TDA)
6A, 6B & 6C	Supercritical Steam 3500/1100/1100	CO ₂ Purification by Catalytic De-oxidation with Natural Gas	Three cases chosen from Case 1 through Case 5 (Cryo, TDA & Ion Transport ASU)
7A, 7B & 7C	Supercritical Steam 3500/1100/1100	CO ₂ Purification by Chemical Looping Combustion or CLC (TDA) with Natural Gas	Three cases chosen from Case 1 through Case 5 (Cryo, TDA & Ion Transport ASU)
8A, 8B & 8C	Supercritical Steam 3500/1100/1100	Advanced CO ₂ &/or ASU Compression	Three cases chosen from above (cryo, TDA & Ion Transport ASU)
9A, 9B & 9C	Advanced-supercritical Steam 3500/1110/1150	Advanced-supercritical Steam Cycle with Advanced Materials	Same as Case 8 except steam cycle (Cryo, TDA & Ion Transport ASU)
10A, 10B & 10C	Ultra-supercritical Steam 4000/1350/1400	Ultra-supercritical Steam Cycle with Advanced Materials	Same as Case 8 except steam cycle (Cryo, TDA & Ion Transport ASU)
11A, 11B & 11C	Ultra-supercritical Steam 4000/1350/1400	Ultra-supercritical Steam Cycle with Co- sequestration	Same as Case 10 without CO ₂ treating to remove SOx & NOx (Cryo, TDA & Ion Transport ASU)
12A, 12B & 12C	Supercritical CO ₂ Conditions: 5030/1400	Supercritical CO ₂ Cycle with Advanced Materials	Similar to Case 8 except working fluid (Cryo, TDA & Ion Transport ASU)

Pressurized Oxy-combustion

Operating Pressure of Circulating Fluidized Bed Combustion (CFBC) Boiler

- Higher operating pressures provided higher net thermal plant efficiency
 - Improving from 29.44% for 10 bar to 30.16% to 20 bar
 - We fixed our operating pressure at 20 bar in our Techno-economic Analysis

Flue Gas Recycle Ratio

Optimized O₂ Concentration in the Boiler Feed with Flue Gas Recycle

- Net thermal plant efficiency increases with increase in O₂ concentration and reaches a maximum around 60% O₂
- We fixed our flue gas recycle ratio such that O₂ concentration in the boiler is 60% for our Techno-economic Analysis

Plant Performance Summary: Cases 1-5

Case #	1	2	3	4	5
ASU Type	Cryo	ITM	ITM	TDA	TDA
CO ₂ Purification	-	-	-	-	-
GROSS POWER GENERATED (AT G	ENERATOR	TERMINAL	S) (KWE)		
STEAM TURBINE	785,587	794,691	785,071	723,700	715,557
DEPLETED AIR EXPANDER	-	217,964	215,454	80,118	80,714
TOTAL GENERATED (KWE)	785,587	1,012,655	1,000,524	803,818	796,271
TOTAL AUXILIARIES (KWE)	235,587	462,655	450,524	253,818	246,271
NET POWER (KWE)	550,000	550,000	550,000	550,000	550,000
NET PLANT EFFICIENCY (% HHV)	31.24	30.55	30.76	32.61	33.00
THERMAL INPUT					
COAL (KWT HHV)	1,760,447	1,800,104	1,705,240	1,686,511	1,569,989
NATURAL GAS (KWT HHV)	-	-	82,751	-	96,584
TOTAL (KWT HHV)	1,760,447	1,800,104	1,787,991	1,686,511	1,666,573
CARBON CAPTURED (%)	99.5	99.5	96.8	99.5	99.5

ASU Type

- TDA high temperature ASU provides highest net thermal plant efficiency
- ITM based ASU provides the lowest net thermal plant efficiency
- Using natural gas instead of boiler to preheat the air provides better net thermal plant efficiency for high temperature ASUs

Case	Power Cycle psig/°F/°F	Subsystem Concept Evaluated	Oxidant
1 (Base)	Supercritical Steam 3500/1100/1100	Current ASU	95% O ₂ , Cryogenic ASU
2	Supercritical Steam 3500/1100/1100	Advanced O ₂ Membrane with Preheat in Boiler	~100% O ₂ , Advanced O ₂ Membrane (Ion Transport)
3	Supercritical Steam 3500/1100/1100	Advanced O ₂ Membrane with Preheat by Natural Gas Combustion	~100% O ₂ , Advanced O ₂ Membrane (Ion Transport)
4	Supercritical Steam 3500/1100/1100	Advanced O ₂ Sorbent (TDA) with Boiler Heat	95%+ O ₂ , Advanced O ₂ Sorbent (TDA)
5	Supercritical Steam 3500/1100/1100	Advanced O_2 Sorbent (TDA) with Natural Gas Combustion Heat	95%+ O ₂ , Advanced O ₂ Sorbent (TDA)

CO₂ Purification Need in POxC

Source: Cost of Electricity for Low Pressure Oxy-Combustion Technologies (NETL 2012)

- The oxygen content in the CO₂ product has to be reduced to less than 1,000 ppmv prior to CO₂ compression
- Heat integration/optimization is critical
 - 10-15% of plant's energy output

CO₂ Purity Specifications

Component	Unit	Carbon Steel Pipeline		Enhanced Oil Recovery		Saline R Seques	eservoir stration	Saline Reservoir CO ₂ & H ₂ S Co- sequestration	
	(Max unless Otherwise noted)	Conceptual Design	Range in Literature	Conceptual Design	Range in Literature	Conceptual Design	Range in Literature	Conceptual Design	Range in Literature
CO ₂	vol% (Min)	95	90-99.8	95	90-99.8	95	90-99.8	95	20 - 99.8
H ₂ O	ppmv	500	20 - 650	500	20 - 650	500	20 - 650	500	20 - 650
N ₂	vol%	4	0.01 - 7	1	0.01 - 2	4	0.01 - 7	4	0.01 – 7
O ₂	vol%	0.001	0.001 – 4	0.001	0.001-1.3	0.001	0.001-4	0.001	0.001 – 4
Ar	vol%	4	0.01 – 4	1	0.01 – 1	4	0.01 – 4	4	0.01 – 4
CH₄	vol%	4	0.01 – 4	1	0.01 – 2	4	0.01 – 4	4	0.01 – 4
H ₂	vol%	4	0.01 - 4	1	0.01 – 1	4	0.01 – 4	4	0.02 – 4
CO	ppmv	35	10 - 5000	35	10 - 5000	35	10 - 5000	35	10 - 5000
H ₂ S	vol%	0.01	0.002 – 1.3	0.01	0.002 – 1.3	0.01	0.002 – 1.3	75	10 - 77
SO ₂	ppmv	100	10 - 50000	100	10 - 50000	100	10 - 50000	50	10 - 100
NOx	ppmv	100	20 - 2500	100	20 - 2500	100	20 - 2500	100	20 - 2500
NH ₃	ppmv	50	0 - 50	50	0 - 50	50	0 - 50	50	0 - 50
COS	ppmv	trace	trace	5	0 - 5	trace	trace	trace	trace
C ₂ H ₆	vol%	1	0 - 1	1	0 - 1	1	0 - 1	1	0 - 1
C ₃ +	vol%	<1	0 - 1	<1	0 - 1	<1	0 - 1	<1	0 - 1
Particulates	ppmv	1	0 - 1	1	0 - 1	1	0 - 1	1	0 - 1
HCN	ppmv	trace	trace	trace	trace	trace	trace	trace	trace
Glycol	ppbv	46	0 - 174	46	0 - 174	46	0 - 174	46	0 - 174

* Not enough information is available to determine the maximum allowable amount for HCI, HF, Hg, MEA and Selexol solvent.

Stringent requirements for O₂ (and other contaminants) in compressed CO₂

• <0.001% vol. O₂

CO₂ Purification via Catalytic Oxidation

- Catalytic oxidation is mature technology
- Challenges with catalytic oxidation
 - To meet the O₂ concentration requirements, natural gas has to be used in greater quantities than required by the reaction stoichiometry
 - Excess natural gas ending in the CO₂ will reduce system efficiency
 - Limit on CH₄ is high (1% vol.) but tighter on heavier HCs

TDA's CO₂ Purification System

- TDA proposes a chemical absorbent-based oxygen removal system
 - Low O₂ concentration in the treated CO₂ can be readily achieved
 - Excess natural gas can be recycled back to the boiler
- Does not use precious metal catalysts; low cost metal oxide catalyst could polish off impurities

TDA's Sorbent

 TDA sorbent consists of a high surface area (>100 m²/g) mixed metal oxide A_xB_yO_z phase that selectively reacts with the oxygen in the compressed CO₂ at moderate temperatures (<200 to 500°C)

$$2M + O_{2(g)} = 2MO$$

 $4MO + CH_{4(g)} = 4M + CO_{2(g)} + 2H_2O_{(g)}$

- Sorbent can effectively reduce O₂ content to less than 100 ppmv
 - No equilibrium limitations
- TDA's sorbent uses a unique structure referred to as a "geode"
 - High mechanical integrity
 - High chemical stability
 - High surface area

TDA's geode sorbent structure as seen in SEM

Geode Active shell material

Typical RedOx Cycle - TGA Tests

- Fast oxidation/reduction kinetics at 500°C
- 18-20% O₂ uptake capacity (kg O₂ removed per kg sorbent)

TGA Cycles at 300°C

- Formulations were modified using promoters to improve kinetics and oxygen uptake at lower temperatures
- Modified samples showed high capacity (12+% wt. O₂) at 300°C

Impact of Temperature

• TDA-3 showed better oxygen uptakes at all temperatures

Breakthrough Tests

- Breakthrough tests confirmed very high oxygen removal efficiency
- O₂ concentration in treated gas can be lowered to <10 ppmv

Using Methane as Reduction Gas

- When CH₄ is used instead of hydrogen the oxygen uptake decreased due to incomplete regenerations (lower reduction rates with CH₄)
- However, still had a good oxygen working capacity in excess of 5% wt.

Reaction Products - 400°C CH₄ Reduction

- CH₄ reduction primarily generated CO₂ (<50 ppm CO observed)
- Longer regenerations are needed for full reduction, short regeneration still had working capacity

Long-Term Stability Tests

Absorption = 2.0% vol. O_2 , Desorption = 1.6% H_2 , GHSV= 68,500 h⁻¹

- TDA's CO₂ purification sorbent maintains its capacity through 5,000+ absorption/ regeneration cycles
- Sorbent achieves a stable working capacity of 3% wt. O₂ (9 min cycle time) with extended cycle time of 22.5 min this increases to above 7.5% wt. O₂

CO₂ Purification Process Design

System Integration

- Both absorption and regeneration processes are exothermic
- Absorption

 $4M + 2O_2 \rightarrow 4MO$

 ΔH_{rxn} = -140-150 kcal/mole

Regeneration

4MO + $CH_4 \rightarrow CO_2$ + $2H_2O$ + 4M ΔH_{rxn} = -40-50 kcal/mole

Various heat removal options were investigated

CatOx vs. Sorbent-Based O₂ Removal

Reactor Type – 2 x Packed Tube Feed-Product Exchangers

 Adsorber – 63 MW_{th} /Regen – 61 MW_{th}

Operating Temperatures

- Absorber Bed 425°C
- Regeneration Bed 425°C
- Outlet Flue Gas 126°C

Heat Recovery – 39 MW_{th} from the shell side of the reactors

 Steam Generated – 59,640 kg/hr @ 45 bar (medium pressure) Reactor Type – Single Fixed Bed Feed-Product Exchangers

• Reactor- 44 MW_{th}

Operating Temperatures

- Catalyst Bed 520°C
- Outlet Flue Gas 165°C

Heat Recovery – 31 MW_{th} from waste heat recovery boiler

 Steam Generated – 48,400 kg/hr @ 45 bar (medium pressure)

Plant Performance : Cases 6-7

Case #	1	6A	6B	6C	7A	7B	7C
ASU Type	Cryo	Cryo	ITM	TDA ASU	Cryo	ITM	TDA ASU
CO ₂ Purification	-	Catalytic	Catalytic	Catalytic	TDA Sorbent	TDA Sorbent	TDA Sorbent
GROSS POWER GENERATED (AT GENERATOR TERMINALS) (KWE)							
sCO ₂ EXPANDER							
STEAM TURBINE	785,587	784,107	779,662	713,618	783,135	780,538	713,955
DEPLETED AIR EXPANDER	-	-	209,582	79,305	-	209,932	79,213
TOTAL GENERATED (KWE)	785,587	784,107	989,244	792,923	783,135	990,470	793,168
TOTAL AUXILIARIES (KWE)	235,587	234,107	439,244	242,923	233,135	440,470	243,168
NET POWER (KWE)	550,000	550,000	550,000	550,000	550,000	550,000	550,000
NET PLANT EFFICIENCY (% HHV)	31.24	30.80	30.75	32.74	30.91	30.70	32.77
THERMAL INPUT							
COAL (KWT HHV)	1,760,447	1,733,581	1,660,466	1,537,853	1,727,623	1,663,167	1,536,058
NATURAL GAS (KWT HHV)	-	52,114	127,956	142,244	51,896	128,232	142,077
TOTAL (KWT HHV)	1,760,447	1,785,695	1,788,422	1,680,097	1,779,520	1,791,400	1,678,135
CARBON CAPTURED (%)	99.5	99.5	96.8	99.5	99.5	96.8	99.5

CO₂ Purification Module

•

TDA's sorbent based
CO₂ purification
process provides
slightly better net
thermal plant
efficiency than regular
catalytic oxidizers

Case	Power Cycle psig/°F/°F	Subsystem Concept Evaluated	Oxidant
1 (Base)	Supercritical Steam 3500/1100/1100	Current ASU – Cryogenic ASU	95% O ₂ , Cryogenic ASU
6A, 6B &	Supercritical Steam	CO ₂ Purification by Catalytic De-oxidation with Natural Gas	Three cases chosen from Case 1 through
6C	3500/1100/1100		Case 5 (Cryo, TDA & Ion Transport ASU)
7A, 7B &	Supercritical Steam	CO ₂ Purification by Chemical Looping	Three cases chosen from Case 1 through
7C	3500/1100/1100	Combustion or CLC (TDA) with Natural Gas	Case 5 (Cryo, TDA & Ion Transport ASU)

Plant Performance : Cases 7-8

Case #	7A	7B	7C	8A	8B	8C
ASU Type	Cryo	ITM	TDA	Cryo	ITM	TDA
CO ₂ Purification	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent	Sorbent
Compression scheme	Regular	Regular	Regular	Advanced	Advanced	Advanced
GROSS POWER GENERATED (AT G	SENERATO	R TERMINA	LS) (KWE)			
STEAM TURBINE	783,135	780,538	713,955	782,862	782,910	712,582
DEPLETED AIR EXPANDER	-	209,932	79,213	-	210,048	78,984
TOTAL GENERATED (KWE)	783,135	990,470	793,168	782,862	992,958	791,566
TOTAL AUXILIARIES (KWE)	233,135	440,470	243,168	232,862	442,959	241,566
NET POWER (KWE)	550,000	550,000	550,000	550,000	550,000	550,000
NET PLANT EFFICIENCY (% HHV)	30.91	30.70	32.77	30.95	30.69	32.87
THERMAL INPUT						
COAL (KWT HHV)	1,727,623	1,663,167	1,536,058	1,725,373	1,664,097	1,531,745
NATURAL GAS (KWT HHV)	51,896	128,232	142,077	51,865	128,295	141,663
TOTAL (KWT HHV)	1,779,520	1,791,400	1,678,135	1,777,237	1,792,392	1,673,409
CARBON CAPTURED (%)	99.5	96.8	99.5	99.5	96.8	99.5

Compression scheme

•

TDA's sorbent based CO₂ purification process provides slightly better net thermal plant efficiency than regular catalytic oxidizers

Case	Power Cycle psig/°F/°F	Subsystem Concept Evauated	Oxidant
7A, 7B & 7C	Supercritical Steam 3500/1100/1100	CO ₂ Purification by Chemical Looping Combustion or CLC (TDA) with Natural Gas	Three cases chosen from Case 1 through Case 5 (Cryo, TDA & Ion Transport ASU)
8A, 8B & 8C	Supercritical Steam 3500/1100/1100	Advanced CO ₂ &/or ASU Compression	Three cases chosen from above (cryo, TDA & Ion Transport ASU)

Plant Performance : Power Cycles

Case #	8C	9C	10C	11C*	12C			
Power Cycle	Supercritical Steam	Adv. Supercritical Steam	Ultra Super	critical Steam	Supercritical CO ₂			
ASU Type	TDA ASU	TDA ASU	TDA ASU	TDA ASU	TDA ASU			
CO ₂ Purification	TDA Sorbent	TDA Sorbent	TDA Sorbent TDA Sorbent		TDA Sorbent			
GROSS POWER GENERATED (AT GENERATOR TERMINALS) (KWE)								
sCO ₂ EXPANDER					692,220			
STEAM TURBINE	712,582	713,792	697,408	693,710	8,292			
DEPLETED AIR EXPANDER	78,984	78,594	72,247	70,877	71,217			
TOTAL GENERATED (KWE)	791,566	792,385	769,655	764,587	771,728			
TOTAL AUXILIARIES (KWE)	241,566	242,385	219,655	214,587	221,728			
NET POWER (KWE)	550,000	550,000	550,000	550,000	550,000			
NET PLANT EFFICIENCY (% HHV)	32.87	33.03	36.55	36.99	38.65			
THERMAL INPUT								
COAL (KWT HHV)	1,531,745	1,524,175	1,399,025	1,383,354	1,380,651			
NATURAL GAS (KWT HHV)	141,663	140,965	105,743	103,524	42,553			
TOTAL (KWT HHV)	1,673,409	1,665,140	1,504,768	1,486,878	1,423,204			
CARBON CAPTURED (%)	99.5	99.5	99.5	99.5	99.5			

* Same as Case 10 without CO_2 treating to remove SOx & NOx (Cryo, TDA & Ion Transport ASU)

- Ultra supercritical steam cycle provides a significant improvement in net thermal plant efficiency of about 3% point over other supercritical steam cycles
- Supercritical CO₂ power cycle provides about 2% point over ultra supercritical steam cycle

Acknowledgements

- DOE/NETL funding under the DE-FE-0029090 project is greatly appreciated
- DOE Project Manager, Diane R. Madden
- Dr. Ashok Rao, UCI

