

## Advanced Cost-effective Coal-Fired Rotating Detonation Combustor for High Efficiency Power Generation DE-FE0031545

Kareem Ahmed<sup>1</sup>, Subith Vasu<sup>1</sup>, Suresh Menon<sup>2</sup> <sup>1</sup>University of Central Florida, Orlando, FL <sup>2</sup>Georgia Tech, Atlanta, GA

PM: Dr. Matthew Adams

NATIONAL ENERGY TECHNOLOGY LABORATORY

Industry Partners: Aerojet Rocketdyne (Dr Scott Claflin)NALISSI (Dr. John Hoke)YAFRL (Dr. Fred Schauer)IOLOGYSiemens (Timothy Godfrey)



**2020 Transformative Power Generation Meeting** 







- Background
- Project Objectives
- Technical Approach
- Project Structure and Management
- Project Schedule





## **Detonations**

#### **Pressure Gain Combustion**

#### Detonation

- Exploits pressure rise to augment high flow momentum
- Fundamental mechanism is turbulent flame acceleration
- High flow turbulence intensities and length scales
- Serious challenge for reliable, repeatable and efficient







Temperatur





## Why Detonation for Coal ACS?

### **Origin of Detonation:**

- Detonation first discovered during disastrous explosions in coal mines, 19<sup>th</sup> century.
- Puzzling at first, how the slow subsonic combustion could produce strong mechanical effects. *Michael Faraday "Chemical History of a Candle" 1848*
- First detonation velocity measurement, Sir Frederic Abel 1869
- Coal particles and coal gas interaction, Pellet, Champion, Bloxam 1872
- Berthelot hypothesized shock wave reaction, detonation, 1870

#### **Coal Mine Fast-Flame Deflagration Explosion**





Museum of Industry, Drummond Mine Explosion, 1873











### Universal Mechanisms Controlling Terrestrial and Astrophysical Explosions



Poludnenko, A., Chambers, J. G, Ahmed, K, Gamezo, V., " A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type la supernovae," Science, Vol. 366, Issue 6465, 2019.







## Explore Advanced Cost-Effective Coal-Fired Rotating Detonation Combustor:

The proposed project aims to characterize the operability dynamics and performance of an advanced cost-effective coalfired rotating detonation combustor for high efficiency power generation

- Development of an operability map for coal-fired RDC configuration
- Experimental investigation and characterization of coal-fired combustor detonation wave dynamics
- Computational investigation and characterization of coal-fired combustor detonation wave dynamics
- Measurement and demonstration of pressure gain throughout the coal-fired RDC operational envelope
- Measurement and demonstration of low emissions throughout the coal-fired RDC operational envelope



6



**Coal-Fired Rotating** 



### 1. Operability Dynamics for Detonation Wave:

- a. Coal Injection
- b. Initiation.
- c. Directionality
- d. Bifurcation

## 2. <u>Performance:</u>

- a. Pressure Gain
- b. Emissions

Aerojet Rocketdyne (Industry Partner)

Dr. Scott Claflin





### **DOE – NETL: Aerojet Rocketdyne and University of Central** Florida

#### Vision

The goal is to measure stagnation pressure for fundamental understanding of pressure gain within a rotating detonation engine. This will allow for proper understanding of flow field effects.











## First Demonstration of H<sub>2</sub>-O<sub>2</sub> Rotating Detonation Rocket Engine

#### Improved Performance and Reduced Cost and Weight



Sosa, Burke, Ahmed, Micka, Bennewitz, Danczyk, Paulson, Hargus Jr., "Experimental Evidence of H2/O2 Propellants Powered Rotating Detonation Rocket Engine," Combustion and Flame, 2020.







## Instrumentation

10

### **Advanced Optical Diagnostics**

- High-speed PIV system (100kHz 1 MHz)
- High speed cameras 21,000-2,100,000 frames per second
- High-speed chemiluminescence CH\*, OH\* (100kHz 1 MHz)
- Light-field focusing system for flow measurements and visualization
- LabVIEW control hardware and software
- Dynamic pressure transducers (PCB)
- Codes: DMD, POD, PIV, Physics-Based Models (Matlab/Fortran)













## **Rotating Detonation Engine**

#### Rotating Detonation Engine: Modeled After the AFRL RDE and the NETL (Don Ferguson)







F



#### **RDE Detonation Velocity Measurements**





12

**F** 



# **Detonation Wave Dynamical Control**

#### Dynamic Control of Detonation Waves through Partial Premixing 2 Wave Detonation (Non-premixed) 3 Wave Detonation (5% of fuel premixed)

### Detonation Frequency: 3537 Detonation Velocity: 1623 m/s



Dunn, I.B., Thurmond, K., Ahmed, K. and Vasu, S., 2019. Wave Dynamics of a Partially Premixed Rotating Detonation Engine. In AIAA Propulsion and Energy 2019 Forum (p. 4128).



#### Detonation Frequency: 3298 Detonation Velocity: 1514 m/s











## 1. Carbon Black (C)

- Size: 29 nm
- Volatility: 1.18%



# 2. Bituminous Coal (C<sub>137</sub>H<sub>97</sub>O<sub>9</sub>NS)

- Size: 5 μm
- Volatility: 34 to 44%









# Coal RDE Test Fires (carbon)







**UCF** 



# **Detonation Wave Dynamics**



J. Bennewitz, B. Bigler, S. Schumaker, W. Hargus Jr, Automated image processing method to quantify rotating detonation wave behavior, Review of Scientific Instruments 90 (2019)









### **ZND Overlay with Detonation Structure**





)F



#### **Particle Reaction**











### First Evidence of Carbon Driving Detonation





















UCF







F















T [K]

3000

2460

1920

1380

840

## **Premixed RDE with Coal Particles**

- UCF RDE geometry without injectors and air slot
- 1-step 3-species kinetics [1] for gaseous H2-air, Euleriar Lagrangian Approach, Dilute loading
- Detonation is sustained but EL particle tracking cost is excessive and not practical for parametric studies







[1] Kindracki, Jan, et al. Progress in Propulsion Physics 2 (2011): 555-582.

Georgia Coll Tech Eng

College of

Salvadori, M., Dunn, I.B., Sosa, J., Menon, S. and Ahmed, K.A., 2020. Numerical Investigation of Shock-Induced Combustion of Coal-H2-Air mixtures in a Unwrapped Non-Premixed Detonation Channel. In *AIAA Scitech 2020 Forum* (p. 2159).





## **Coal Modeling Formulation**

• Mass Transfer: Limited by the reaction kinetics or diffusion of species <sup>[1]</sup>.

$$\frac{dm_c}{dt} = -\dot{m}_c = \frac{d}{dt} (\frac{4}{3}\rho_c \pi r_c^3)$$

• The net mass transfer for carbon particles is thus defined as:

$$\dot{m}_{c} = \frac{P_{O_{2}}}{\frac{1}{k_{s}} + \frac{1}{k_{d}}} \begin{pmatrix} k_{s} = 0.86 \ e^{\left(-\frac{1.495 \times 10^{8}}{RT_{c}}\right)} & k_{s}: \text{Kinetic-link} \\ k_{d}: \text{Diffusion} \\ T_{m}: \text{ mean gassing } \\ \phi: \text{ Mechaniss} \\ D_{d}: \text{Diffusion} \\ D_{d}: D_{d}: D_{d}: D_{d}: D_{d}: \\ D_{d}: D_{d}: D_{d}: D_{d}: D_{d}: D_{d}: D_{d}: D_{d}: D_{d}: \\ D_{d}: D_{d}$$

 $k_s$ : Kinetic-limited  $k_d$ : Diffusion-limited  $T_m$ : mean gas/particle temperature  $\phi$ : Mechanism factor  $D_d$ : Diffusion coefficient

2-steps infinite-rate gas-phase reactions <sup>[2]</sup>

Georgia

Tech

 $C_g + O_2 \rightarrow CO_2$  (partial oxidation)  $C_g + \frac{1}{2}O_2 \rightarrow CO$  (oxidation)

1. Baek, S. W., Sichel, M., and Kauffman, C. W. Combustion and Flame 81, 3-4 (1990), 219–228 2. Balakrishnan, K., and S. Menon. *Combustion Science and Technology* 182.2 (2010): 186-214.



# **80-Injector Non-Premixed RDE (full rig in UCF)**

• Sensitive to initialization

Georgia College of **Tech** Engineering

- High P, T charge
- 1D  $H_2$ /air detonation solution
- Char. Inflow/outflow, adiabatic walls
- Solution carried long enough to establish rotating detonation
- High mass flow rate in this case results in 4-wave stable system
- Study underway with reduced mass flow to achieve 1 or 2 detonations
- Two-phase cases deferred for



**Later** 1. Baurle, R., Alexopoulos, G., and Hassan, H. Journal of Propulsion and Power 10, 4 (1994), 473–484. 2. Poinsot & Lele, J. Comp. Phys. 1992



## **Linear Array Detonation Studies**

- 15-injector & 8-injector unwrapped array to isolate two-phase detonation features
- Use pre-detonation tube to create shock-to-detonation-transition (SDT), get a DW into chamber, and then investigate if detonation sustains in a 2-phase mixture
- H<sub>2</sub> injected as before but with different coal-air mixture in the oxidizer stream

| Parameter                   | Value                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Kinetics                    | 7-steps 7-species $H_2$ /air mechanism <sup>[1]</sup><br>2-steps 3-species infinitely fast <i>C</i> / $O_2$ <sup>[3]</sup> |
| Coal                        | Diffusion and kinetics limited mass transfer <sup>[2]</sup>                                                                |
| $\dot{m}_{air}$             | 0.15 kg/s                                                                                                                  |
| $\dot{m}_{H_2}$             | 0.0052 kg/s – 15 injectors<br>0.0027 kg/s – 8 injectors                                                                    |
| $T_{in,H_2}$ , $T_{in,Air}$ | 300 K                                                                                                                      |

**Georgia 🛯 College of** 

Tech (/ Engineering)



Baurle, R., Alexopoulos, G., and Hassan, H. Journal of Propulsion and Power 10, 4 (1994), 473–484.
Baek, S. W., Sichel, M., and Kauffman, C. W. Combustion and Flame 81, 3-4 (1990), 219–228
Donahue, L., F. Zhang, and R. C. Ripley. *Shock Waves* 23.6 (2013): 559-573.

