Development & Validation of Low-Cost, Highly-Durable, Spinel-Based Materials for SOFC Cathode-Side Contact

Jiahong Zhu

Department of Mechanical Engineering Tennessee Technological University (TTU)

Annual Solid Oxide Fuel Cell (SOFC) Project Review Presentation, 2020

Outline

- Introduction and Project Objectives
- Performance Evaluation of the Sintered Spinel Contact Thermally Converted from Pre-alloyed Precursors
 Area Specific Resistance (ASR), Chemical Compatibility, etc.
- Initial Study on Reaction Layer Formation Kinetics/ Mechanism
- Reactive Sintering of Dense (Mn,Co)₃O₄ Coatings
- Co-sintering of Spinel-Based Coating/Contact Dual-Layer Structure between Full-sized Ferritic Alloy and LSM Plates
- Concluding Remarks
- Acknowledgments

Need of Contacting for Different SOFC Stacks

 In stacks with anode-supported cells (ASC-SOFC), the contact is required to minimize the cathode-interconnect interfacial resistance.

Cathode-Interconnect Interface in ASC SOFC Stacks

 In all-ceramic stacks, the contact is required to minimize the interfacial resistance between the current collector plate and cathode end plate.

Cathode-Current Collector Interface in All-Ceramic SOFC Stacks

3

Contact Material Requirements

- Requirements for contact materials in ASC-SOFC and all-ceramic SOFC stacks are generally similar, including:
 - Low material/processing cost
 - High electrical conductivity
 - Match in coefficient of thermal expansion (CTE)
 - Adequate stability and compatibility
 - Appropriate sinterability
 - Good bonding strength with adjacent stack components
 - Absence of volatile species

Cathode-Current Collector Interface in All-Ceramic SOFC Stacks

 Additionally, a reasonable porosity level in the cathodeside contact is needed in ASC stacks for maximizing the triple phase boundaries for cathodic reaction.

Different Contact Materials

- While various materials for ferritic alloy-cathode contacting have been studied, most developments have focused on (La,Sr)(Mn,Co,Fe,Ni,Cu)O₃:
 - Difficulty in balancing the electrical conductivity, CTE, sinterability and chemical compatibility of the perovskites.

Material	Example	CTE (×10 ⁻⁶ /K)	Conductivity	Main Concern	
Туре	·	(20–800°C)	(S·cm ⁻¹ , 800°C)		
	Pt	10.0	Metallic	High Cost	
Noble	Pd	12.3	Metallic	High Cost	
Metal	Au	16.6	Metallic	High Cost	
	Ag	22.0	Metallic	Volatility	
Perovskite	(La _{0.8} Sr _{0.2}) CoO _{3-δ}	19.2 (20-1000°C)	1400	CTE Mismatch	
	(La _{0.8} Sr _{0.2})(Co _{0.5} Fe _{0.5})O _{3-δ}	18.3 (20-1000°C)	340	CTE Mismatch	
	(La _{0.8} Sr _{0.2})(Co _{0.5} Mn _{0.5})O _{3-δ}	15.0 (20-1000°C)	190	CTE Mismatch	
	(La _{0.8} Sr _{0.2})MnO ₃	11.7 (20-1000°C)	170	Sinterability	
	LaMn _{0.45} Co _{0.35} Cu _{0.2} O ₃	13.9	80	Mn/Cu Migration	
Spinel	MnCo ₂ O ₄	9.7-14.4	24-89	Sinterability	
	Mn _{1.5} Co _{1.5} O ₄	10.6-11.6	55-68	Sinterability	
	NiCo ₂ O ₄	12.1	0.93	Sinterability	
	NiFe ₂ O ₄	11.8	0.3, 6.8, 17.1	Sinterability	
	Ni _{0.85} Fe _{2.15} O ₄	12.1	15.4	Sinterability	

5

Why (Ni,Fe)₃O₄- and (Mn,Co)₃O₄-Based Spinels as Contact Material?

 Conductive spinels based on (Ni,Fe)₃O₄ and (Mn,Co)₃O₄, which have been extensively evaluated as interconnect coating, are also promising for contact application, based on electrical conductivity, CTE, chemical compatibility, etc.

Material Type	Example	CTE (×10 ⁻⁶ /K) (20—800°C)	Conductivity (S·cm ⁻¹ , 800°C)	Main Concern
Spinel	MnCo ₂ O ₄	9.7-14.4	24- 89	Sinterability
	Mn _{1,5} Co _{1,5} O ₄	10.6-11.6	55-68	<u>Sinterability</u>
	NiCo ₂ O ₄	12.1	0.93	Sinterability
	NiFe ₂ O ₄	11.8	0.3, 6.8, 17.1	Sinterability
	Ni _{0.85} Fe _{2.15} O ₄	12.1	15.4	Sinterability

- Unfortunately, the sinterability of spinels is very poor (typically ≥1000°C), if metal oxides are used as the starting powders.
- Employment of metallic powders (instead of oxide powders) as the starting precursor will lower the sintering temperature via a reactive sintering mechanism called <u>environmentally-assisted reactive</u> <u>sintering (EARS).</u>

Utilization of EARS for Reduced-Temperature Sintering of Spinel-Based Contact

 In EARS, with the participation of oxygen from air, the metallic powder precursor will be oxidized and reacted to form a wellsintered spinel at a reduced temperature (e.g., 900°C):

(b):
$$AO_x + 2BO_y + (2 - \frac{1}{2}x - y)O_2(g) = AB_2O_4 + \Delta H_1$$

(c): $A + 2BO_y + (2-y)O_2(g) = AB_2O_4 + \Delta H_2$

(d) & (e): $A + 2B + 2O_2(g) = AB_2O_4 + \Delta H_3$

 $\Delta H_3 > \Delta H_2 >> \Delta H_1$

- Enhanced sintering via EARS is likely due to:
 - Heat released during the reaction;
 - Volume expansion upon conversion of metal to metal oxide;
 - Formation of highly-active surface nano-oxides;
 - Shorter diffusion distance when a pre-alloyed powder is employed.
 Zhu et al., IJHE, 2018

(a) with a spinel (S) powder

(b) with a mixture of metal oxides

(c) with metal and oxide powders

(d) With two metal powders

7

Project Objectives

- **Optimization of the multi-component alloy precursor** composition as contact material. The alloy compositions will be optimized via composition screening in the $(Ni,Fe,Co,X)_3O_4$ and (Mn,Co,X)₃O₄ system, alloy design using physical metallurgy principles, and cost considerations. The desired alloy powders will be manufactured & characterized in detail.
- **Demonstration/validation of the contact layer performance in** \bigcirc relevant SOFC stack environments. Long-term ASR behavior and in-stack performance of the contact layer in relevant stack operating environments, its microstructure, chemical compatibility & Cr-retaining capability will be evaluated.
- Further cost reduction and commercialization assessment. Approaches to further reducing the stack cost will be explored, such as co-sintering of the interconnect coating and contact layer. Cost analysis and scale-up assessment will be conducted for potential commercialization. 8

Compositional Design for Co-Mn Based Alloy Precursor

Phase Diagram of the Co-Mn System

Co-31.76 wt.%Mn was selected as the baseline composition, which after thermal conversion would lead to the MnCo₂O₄ spinel formation:

 The Co-31.76 wt.%Mn alloy has the single-phase fcc structure at 900°C;

 MnCo₂O₄ has a cubic structure at both 800 and 20°C

Phase Diagram of the Co-Mn-O System in Air

Compositional Design for Co-Mn Based Alloy Precursor

- Fe addition to the binary Co-Mn alloy for reducing the reaction layer growth;
- Ce doping for slowing down the Cr₂O₃ scale growth on the alloy and improving the scale adhesion via "reactiveelement effect".

The interface of (a) $MnCo_2O_4$ (MC)/ Cr_2O_3 & (b) $MnCo_{1.7}Fe_{0.3}O_4$ (MCF)/ Cr_2O_3 diffusion couple after 900°C for 300 h

Alloy Compositions & Corresponding Spinels after Thermal Conversion

(in wt.%)	Со	Mn	Fe	Се	Spinel Composition
Alloy 1	68.21	31.79	—		MnCo ₂ O ₄
Alloy 2	64.72	31.80	3.23		MnCo _{1.9} Fe _{0.1} O ₄
Alloy 3	64.72	31.77	3.23	0.41	MnCo _{1.895} Fe _{0.1} Ce _{0.005} O ₄

Gas Atomization of Selected Alloys

- A number of Co-Mn based compositions were selected for the powder preparation.
- The powders with the desired composition and particle size were manufactured using a semi-industrial gas atomizer.

Gas Atomization System

Chemical analysis of the collected powders was conducted at Dirats
 Lab – a close match with the targeted compositions was achieved.

A lab-scale gas atomizer is currently being installed at TTU under a DoD DURIP project.

Thermal Conversion of Alloy Precursors

- Three alloy powders and a Co+MnO₂ mixture were used as the precursor for synthesis of the desired spinel layer.
- After screen printing, the precursor layer was sintered at 900°C for 2 h in air to convert it to the spinel layer.
- A single-phase (Mn,Co)₃O₄ (MCO) spinel layer was formed for all the precursors.
- The alloy precursors led to narrower peaks, indicating a more homogeneous composition.

XRD Patterns of Different Precursors after Conversion

Microstructure of Converted Spinel Layer

 The MCO layer formed with the alloy powders was more dense, compared to that with Co+MnO₂. This is a result of more volume expansion with the alloy precursor.

Cross-sectional View of the Spinel Layer Converted from Different Precursors: (a) Alloy 1 and (b) Co+MnO₂

Area-Specific Resistance (ASR) Measurement

- A number of test cells were constructed, with the spinelforming contact precursor layer sandwiched between the ferritic alloy Crofer 22 APU and the LSM cathode.
- The test cells were spring-loaded and heated to and held at 900°C for 2 h; after cooling down to 800°C, the cell ASR change during isothermal exposure at 800°C in air was monitored using a special 6-cell test rig.

Schematic of the ASR Test Cell and Test Configuration

Cell ASR with Different Metallic Contact Precursors

- The ASR for Crofer/contact /LSM cells with the alloy precursors was much lower than that with the Co+MnO₂ precursor over the duration of the test.
- The higher cell ASR with the Co+MnO₂ precursor is partially due to the higher porosities in the contact layer.

(a) Alloy 1

(b) Co+MnO₂

Cross Sections of Crofer/Contact/LSM cells with Different Contact Precursors

Cell ASR vs. Time at 800°C in Air

Crofer-Contact Interface: Formation of Cr₂O₃ Scale and (Mn,Co,Cr)₃O₄ Reaction Layer

- A Cr_2O_3 scale on Crofer 22 APU surface and a reaction layer (RL) between the Cr_2O_3 scale and the MCO contact were formed after testing.
- Alloy contact precursor composition had a significant effect on the thicknesses of these two layers.

Cross-sectional views of the ASRtested cells with different contact precursors: (a) Alloy #1; (b) Alloy #2; (c) Alloy #3; and (d) Co+MnO₂. Images were taken near the **Crofer-contact** interface with the superimposed EDS line scans.

Summary of ASR and Cr₂O₃/Reaction Layer Thickness

- While Fe addition into the Co-Mn alloy powder had no beneficial effect on the cell electrical performance, Ce doping (in Alloy #3) led to the lowest cell ASR and ASR degradation rate as a result of slower Cr_2O_3 scale/RL growth and better scale adhesion.

Initial ASR (R_i), Final ASR after 1000-h Testing (R_f), ASR Degradation Rate during Initial 50 h (DR_o), ASR Degradation rate during Final 50 h (DR_f), and Thicknesses of the Cr_2O_3 Scale and RL after ASR Testing

	Alloy 1	Alloy 2	Alloy 3	Co+MnO ₂
R _o (mΩ⋅cm²)	1.8	2.2	2.0	4.6
R _f (mΩ⋅cm²)	4.0	4.6	3.1	7.0
DR _o (μΩ⋅cm²/h)	3.3	3.5	1.5	11.1
DR _f (μΩ⋅cm²/h)	1.4	1.3	1.0	1.4
Cr ₂ O ₃ scale (µm)	1.0	1.0	0.9	0.6
RL (µm)	1.4	2.2	1.4	4.5

17

Effectiveness of the Contact Layer in Mitigating Cr Migration

Cross-sectional View of Tested Cells near the LSM-Contact Interface with Different Contact Precursors: (a) Alloy 1 and (b) Co+MnO₂

- Minimal interdiffusion was observed between the contact layer and cathode for all tested cells.
- No Cr was detected in the LSM cathode for the cells with the alloy contact precursors, while for the cell with the Co+MnO₂ precursor the Cr level in the porous LSM cathode fluctuated noticeably.

Preliminary Study on Reaction Layer Formation Kinetics/Mechanism

- Since a RL was formed between the MCO layer and the Cr_2O_3 scale, it is critical to study the effect of the MCO stoichiometry and additional doping on the LR formation kinetics/mechanism:

- Contacting faces of MCO/Cr₂O₃ pellets were ground to 800-grit;
- Pt particles were applied to contacting face of MCO pellet to mark the original interface;
- The couple was loaded into a vertical furnace and then diffusion annealed at 900°C for different times,
- The annealed couples were cross-sectioned and examined with SEM/EDS.

Mn_{1.5}Co_{1.5}O₄/Cr₂O₃ Couple after Annealing at 900°C for 300 h

19

Preliminary Study on Reaction Layer Formation Kinetics/Mechanism

- A minimum in RL thickness was observed when x = 1.2 in $Mn_xCo_{3-x}O_4$.
- Pt marks were always observed near the MCO/RL interface, indicating the RL formation was via Co/Mn diffusion into Cr₂O₃.

– The RL growth kinetics is being determined.

MnCo₂O₄/Cr₂O₃ Couple

 $Mn_{1.2}Co_{1.8}O_4/Cr_2O_3Couple$

RL Thickness after 900°Cx 300-h Diffusion Anneal

EARS Processing of Dense MCO Coatings

- Reactive sintering of a dense MCO coating via EARS has been explored and promising results were obtained:
 - By controlling the composition/shape/size/size distribution/initial packing density of the metallic precursor powders, a dense spinel layer was obtained after thermal conversion at 900°C for 2 h in air.
- The EARS-derived coating does not require a reduction treatment or a sintering temperature higher than 900°C, and potentially offers a better MCO coating quality.

Improvement in Quality of TTU's Reactive Sintered MCO Coatings on Crofer 22 APU ¹²

Processing MCO Coating on Full-Size ZMG 232G10 Alloy Plate

- By optimizing the metallic spinel-forming precursor and thermal conversion conditions, a dense MCO coating was achieved, which was quite uniform in thickness and density throughout the alloy plate surfaces.
- The overall quality of the coating on the full-size alloy plate was comparable to that achieved on the small coupons.

MCO Coating at Different Plate Locations¹²

Co-sintering of Coating/Contact Dual-Layer Structure: Further Cost Reduction and Performance Improvement

- To lower the interfacial ASR at the alloy/contact interface, improve the contact quality, and reduce the coating and contact processing cost, co-sintering of the coating and the contact layer during initial stack firing/operation is also explored, utilizing two different metallic precursors:
 - Two spinel-forming precursors (Type #1 for the contact layer and Type #2 – for the dense MCO coating) will be employed;
 - Reactive co-sintering in air at a sintering temperature of 900°C will be utilized for simultaneous formation of the dual-layer structure.

Schematic of Co-sintering of Spinel-Based Coating/Contact Dual-Layer Structure 23

Co-sintering of Coating/Contact Layers between Full-Size Ferritic ZMG 232G10 Alloy and LSM Plates

- Using full-sized alloy and LSM plates supplied by our industrial collaborator, a full-size alloy/coating/contact/LSM assembly with two metallic precursors for the coating and contact layer formation was prepared by co-sintering at 900°C.
 - A dense coating and a porous contact layer between the ZMG alloy and LSM plates were achieved after co-sintering, via the utilization of two individually-optimized metallic precursors.
 - The thicknesses of the coating and the contact layer were 10-15 and 100-120 µm, respectively.
 - ASR testing of the sintered assembly is underway.

Co-sintered Structure at Different Locations 24

Project Milestones

Milestone Title/Description	Planned Start Date	Planned Completion	Actual Completion	Verification Method	Status
Revised PMP	10/10/2017	Date 10/30/2017	Date 10/23/2017	PMP file	Completed
Kickoff Meeting	10/30/2017	12/29/2017	11/20/2017	Presentation file	Completed
Compositional optimization of Precursor alloy	11/01/2017	06/30/2018	06/28/2018	Optimal Fe/Ni/Co and other alloy additions are identified.	Completed
Preparation of the alloy powder	11/15/2017	09/31/2018	09/20/2018	Atomization of one alloy powder is completed.	Completed
Demonstration of ASR stability with the new contact	01/01/2018	06/30/2019	02/20/2019	The ASR stability is demonstrated successfully for about 5,000 h.	Completed
Demonstration of stack performance stability with 1-cell stack testing	04/02/2018	09/30/2019	09/27/2019	Stack performance stability testing for ≥ 1,000 h is completed at industrial site.	Completed
Synthesis of dense coating on full-size current collector	10/20/2019	02/29/2020	12/25/2019	Dense coating on full-size current collector plate is achieved.	Completed
In-stack evaluation with co-sintered coating/contact structure	01/20/2020	08/20/2020		Stack power output stability testing for over 500 h is completed at Saint Gobain.	In progress
Cost analysis and feasibility assess.	06/30/2020	09/30/2020		Cost analysis and scale-up assessment are completed.	No started

Concluding Remarks

- The spinel contact-forming alloy precursor composition had a significant effect on the Cr₂O₃ scale thickness/quality, reaction layer thickness between the spinel and Cr₂O₃, and cell ASR.
- The MCO spinel stoichiometry drastically affected the thickness of the reaction layer formed between MCO and Cr₂O₃, with the Mn_{1.2}Co_{1.8}O₄ spinel leading to the thinnest reaction layer.
- By controlling the metallic precursor powder composition, size, size distribution, and initial powder packing density, a dense MCO coating has been synthesized on large-size ferritic alloy plate.
- Co-sintering of a dual-layer structure with a dense spinel layer as coating and a porous layer as contact can be achieved by utilizing two tailored metallic precursors between large-size alloy and LSM plates.

Acknowledgments

- U. S. Department of Energy National Energy Technology Laboratory, Solid Oxide Fuel Cell Prototype System Testing and Core Technology Development Program, Award No. DE-FE0031187; Project Manager: Dr. Patcharin Burke
- Allen Yu, Jacob Hayes, David Chesson, and Brian Bates, TTU
- Dr. Hossein Ghezel-Ayagh, FuelCell Energy, Inc.
- Dr. John Pietras and his team at Saint Gobain