NETL 21th Annual SOFC Meeting

Robust Highly Durable Solid Oxide Fuel Cell Cathodes – Improved Materials Compatibility & Self-Regulating Surface Chemistry DE-FE0031668

Clement Nicollet, Han Gil Seo and Harry L. Tuller*

Massachusetts Institute of Technology

Solid Oxide Fuel Cells

Conventional SOFCs

• All solid state components

- High conversion efficiency
- Fuel flexibility (H₂, C_nH_{2n+2}, \cdots)
- High operating temperature > 800 °C

Fast performance degradation

J. Am. Ceram. Soc., 1993, 76, 563. Science, 2011, 334, 935.

Segregation of non-active ions

Sr-rich phase segregation

Adsorption of impurities

Si- or Cr-related phase

Target: Pr-doped CeO₂ (PCO)

Mixed conducting property in oxidizing atmospheres

Pr-doped CeO₂ (PCO) is expected to be inherently more resistant to chemical degradation induced by Sr, Cr and Si species due to the absence of Sr source.

Previous Work on Surface Activity of PCO

PCO film (PLD) on Y-doped zirconia (YSZ) substrates

Light beam

Color of PCO depends on Pr valence

Absorption \leftrightarrow oxygen non-stoichiometry

Beer-Lambert law $\alpha_{Pr^{4+}} = \varepsilon_{Pr^{4+}}[Pr^{4+}]$

Optical transmission relaxation (OTR)

- No need of current collector electrode
- Current collector contact-free measurement

Step in $pO_2 \rightarrow$ Transmittance relaxation

Surface exchange coefficient (k_{chem})

Impurity Adsorption (Si) on PCO

Surface impurities can have a significant impact on surface oxygen exchange kinetics and on performance degradation under operation.

5

Project Action Plan

Objective: Development of highly durable SOFC cathodes achieved through surface chemistry engineering

Tasks	Verification Method
Scavenger exsolution characteristics	 Examine effect of La doping of PCO on Si surface poisoning via thin film study. Investigate exsolution kinetics of other scavengers such as Ca and Sr as a function of temperature, time and bias.
Reactivity efficacy of scavengers with Si and Cr impurities	 Assess PCO surface oxygen exchange rate with respect to a variety of scavengers by electrical conductivity relaxation. Investigate key descriptors to predict surface oxygen exchange rate.
Electrochemical characterization of optimized compositions in porous symmetric SOFC cells	 Fabricate optimized highly porous PCO films by PLD and evaluate area-specific resistance (ASR) of symmetric cells. Analyze surface impurities related ASR and performance degradation over time.

[1]

Scavenger exsolution characteristics

- La doping of PCO versus surface loading -

Self-cleaning Strategy of Poisoned PCO

Cation segregation in perovskite oxides

 $La_{0.8}D_{0.2}MnO_3$ (D = Ca, Sr, Ba) thin films

Elastic interactions

Si getter: exsolved La scavenger on PCO surface


```
La_x Ce_{0.9-x} Pr_{0.1}O_{2-\delta}
```

Scavenger exsolution

La-doped PCO10

- La can be fully inserted and dissolved into ceria lattice.
- La increases lattice parameter of ceria as expected.

Transport Properties: La-doped PCO10

Massachusetts Institute of Technology

4-point probe conductivity measurement

- La dopant reduces conductivity activation energy (La drives Pr to 4+).
- Ionic conductivity is enhanced by La while retaining a significant electronic component.

Optical Transmission Relaxation

 By fitting transmission relaxation profiles, oxygen exchange coefficient (*k_{chem}*) values are obtained.

La doping Effect on Si Poisoning

• La scavenger renders PCO more resistive to Si poisoning.

Future Study: Other Scavengers

Temperature
 Time

For Example, Ca Scavenger

• Ca dopant as potential scavenger can be substituted into ceria lattice.

[2]

Reactivity efficacy of scavengers with Si and Cr impurities

- Surface impurities on PCO cathode -

Research Approach

 $k_{chem} \propto f(Cr \ concentration, \ annealing \ time)$

For surface reaction limit

Oxygen Exchange Coefficient of PCO10 Porous Bar Pellet

 Magnitude of applied voltage determined not to be key parameter in influencing determination of oxygen exchange coefficient.

Adsorption of Cr Impurity on PCO10

- Cr₂O₃, as solution of Cr nitrate, infiltrated onto PCO surface, lowers surface oxygen exchange rate (k_{chem}).
- Exchange rate decreases with higher Cr poisoning concentrations.

g(t): conductivity of oxide at time t, A: exchange area, V: volume, p: porosity, SA: surface area, τ : time constant 18

Evolution of k_{chem} vs. Cr Concentration

• Response is characterized by two time constants associated with two types of surface regions.

Evolution of k_{chem} vs. Cr Concentration

- A₁: fraction unpoisoned regions
- τ_1 : time constant unpoisoned regions $g(t) = A_1 \left(1 - e^{-t/\tau_1} \right) + A_2 \left(1 - e^{-t/\tau_2} \right)$
 - A₂: fraction Cr-poisoned regions
 - τ_1 : time constant Cr-poisoned regions

As Cr poisoning level increases, fraction of Cr-poisoned surface increases, while, in turn, fraction of pristine PCO surface decreases.

Cr Annealing Temperature Effect

- Slight change in oxygen exchange rate observed with anneal temperature.
- Regardless of annealing temperature, Cr impurities on PCO surface found to be detrimental for oxygen exchange kinetics.

Future Study: Examine Role of Scavenger in Enhancing Initial k_{chem} vs. Recovery after Poisoning

Acknowledgement

- Title: "Robust highly durable solid oxide fuel cell cathodes Improved materials compatibility & self-regulating surface chemistry"
- Funding Opportunity Number: DE-FOA-0001853
- Specific FOA area of interest: AOI 1 Solid Oxide Fuel Cells (SOFC) Core Technology Research: Cell and stack degradation
- Program Manager: Steven R. Markovich

Dr. Clement Nicollet

Dr. Han Gil Seo

Prof. Harry L. Tuller

Thank you for your attention!!

