

Figure 2(a) Schematic for the experimental setup for *in-situ* Raman spectroscopy coupled with electrochemical characterization; (b) critical surface and interface regions in the *in operando* study of electrode behavior; (c) schematic of pulsed laser deposition (PLD) thin film for in situ Raman study; (d) SEM of fresh films and films after Raman testing in conditions with contaminations.

PLD film

YSZ (001)

SDC

Y µm

Bare, after

Catalyst, after

Highly-Active and Contaminant-Tolerant Cathodes for Durable Solid Oxide Fuel Cells

Yucun Zhou, Yu Chen, Nicholas Kane and Meilin Liu School of Materials Science & Engineering, Georgia Tech, Atlanta, GA 30332-0245

electrodes in two different cell configurations. The thin-film electrode in Cell 1 was in direct contact with the Cr-containing alloy while that in Cell 2 was not in direct contact with the Cr-containing alloy; (b) Surface enhanced Raman spectra acquired near the boundaries between the LSCF thin-film electrode and the GDC substrate. The cathode in Cell 1 was in direct contact with the Cr containing alloy while that in cell 2 was not; (c) Typical SERS spectra of the porous LSCF electrode in contact with the Cr-containing alloy in an atmosphere with 3, 5, and 10 v% H_2O ; (d) Schematics of the model cell with patterned electrodes showing the position of the laser spot for the in situ/in operando SERS study of the LSCF thin-film electrode (on a GDC substrate) in direct contact with the Cr-containing alloy with/without bias of 1.5V at 550 °C in air with 3% H₂O; (e) Optical images of the LSCF thin-film electrodes and the GDC substrate, with (right) and without (left) bias; (f) The SERS mapping of SrCrO₄ (peak at 860 cm⁻¹) on the LSCF electrodes after the Cr poisoning test (at 550 °C for 2 h), showing that SrCrO₄ preferentially concentrates on the LSCF-GDC boundaries.

Figure 3 (a) Experimental setup for the Cr poisoning test of the LSCF thin-film

Results and Discussion

1. Performance enhancement of cells with catalyst coated cathode exposed to contaminants

Figure 4 (a) A Typical cross-sectional SEM image of a Ni-YSZ anode supported cell; (b) Typical I–V–P and (c) EIS curves of the cells with a bare LSCF or BCO-LSCF cathode at 700 °C in direct contact with Crofer 22APU; (d) Durability test of single cells with bare LSCF cathode in clean air (black balls), bare LSCF (blue balls), and BCO-LSCF (red balls) in 3%H₂O-air and a direct Crofer 22APU contact.

SrCrO₄

12

11

2. Raman spectroscopic study of electrode w&w/o contaminants

Figure 5 (a) Typical Raman spectra from a bare LSCF and a BCO-LSCF dense pellet after the Cr poisoning test (3% H₂O, 750 °C, 12 h); Optical image of bare LSCF (b) and BCO-LSCF (c) for Raman mapping; Raman mapping of -CrO₄ (peak at ~850 cm⁻¹) observed from the bare LSCF (d) and BCO-LSCF (e) dense pellet surface after the Cr poisoning test.

3. Development of contaminant-tolerant catalyst

Time (h)

Time (h)

Figure 6 Interfacial resistance of blank LSCF and catalysts coated LSCF as function of time, when exposed to different contaminant. (a) in direct contact with Cr in dry air; (b) in direct contact with Cr in 3% H_2O ; (c) 27 ppm SO₂ in air; (d) boronsilicon glass; (e) Cr and B-silicon glass; (f) B-silicon glass and air with 27ppm SO₂; (g) Cr and air with 27ppm SO₂; (h) Cr and B in air with 27ppm SO₂.

Summary

- Gained important insight into the degradation mechanisms of LSCF under ROC (air with Cr, B, S) using in situ SERS, longterm performance testing, and modelling & simulation
- Developed robust catalysts with enhanced tolerance against various contaminants while maintaining high ORR activity

Acknowledgement

This work was supported by the US DOE SECA Core Technology Program under Grant No. DE-FE0031201.