1. Effects of H_2O in Hydrogen Oxidation Reaction on the Perovskite Surfaces

The electrochemical performances of perovskite materials Sr$_x$Fe$_{1-x}$Mo$_y$O$_{3+y}$ (SF1.5M) and the Pr- and La-substituted series for the hydrogen oxidation reaction (HOR: $H_2(g) + O_2(g) = H_2O(g) + V_{2H} + 2e^-$) in dry and humidified H_2 are investigated by Density Functional Theory (DFT) based thermodynamic modeling, electrical conductivity relaxation (ECR), and electrochemical impedance spectroscopy (EIS) techniques [1].

Both ECR and EIS measurement results indicated a promoted electrochemical performance on tested SF1.5M material in humidified H_2.

DFT-based thermodynamic modeling revealed nonstoichiometry of SF1.5 (001) slab models significantly alters the HOR energy landscape.

DFT energy analysis showed enhanced interaction of surface H species with the hydrated SF1.5M surface.

Acknowledgements

[1] Qi and Lee et al., ACS Catal. 2020, 10, 5567−5578

2. Hydrogen and Cation Diffusion in Bulk Tetragonal Zirconia

Density functional theory based thermokinetic modeling was performed to determine the effect of H_2O and O_2 gas pressure on the defect chemistry, hydrogen solubility and diffusivity, and on cation transport in tetragonal bulk ZrO$_2$ [2].

The DFT based defect thermodynamic modeling results provide information related to the stable defect complexes and hydrogen-related defect species relevant to bulk cation transport kinetics at different gas pressure and T conditions.

Summary
- Most of the stable hydrogen defect species in tetragonal bulk ZrO$_2$ is $H_2O(-3)$, and its concentration is 4-6 orders magnitude higher than that of H interstitial (H_{int}). Nonetheless, the most active hydrogen transport occurs via $H_{int}(+1)$ with migration barriers 0.2-0.4 eV than through the stable $H_2O(-3)$ defect which has a larger migration barrier of 1.6 eV.
- The calculated diffusion coefficients reveal that cation diffusion in tetragonal bulk ZrO$_2$ will transit from the $V_{2H}(-4)$ mechanism at high temperatures to the $H_2O(-3)$ mechanism upon lowering the operating temperature and/or increasing the humidity content.
- The model further predicts another transition in the bulk cation transport mechanisms, $V_{2H} \to$ fully- or partially-bound Schottky defects above $T=1573$ K (attributed to enhanced gas entropic stabilization) [2,3].
- Formation of $V_{2H}(-4)$, $Zr_{int}+O_2(+4)+V_{2H}(-4)+Zr_{int}(−4)$-$H^+$ involves the O_2 gas phase (or H_2O - H_2) on the reactant side, which destabilizes the reaction with increasing temperature; this gas effect was further balanced in the Schottky defect formation.

Dependence of Modeled D_{H2} and D_{O2} on 1/T

Cation migration barriers (V_{2H} vs H_{int})
- $V_{2H}(-2)$ $V_{2H}(-4)$
- $H_{int}(+1)$ $H_{int}(-4)$

H migration barriers (H_{2O} vs H_{int})
- $H_{int}(+1)$ $H_{int}(-4)$

Acknowledgements

This work was performed in support of the US Department of Energy’s Fossil Energy Crosscutting Technology Research Program. The research was executed through the NETL Research and Innovation Center’s Solid Oxide Fuel Cells portfolio. Research performed by Leidos Research Support Team staff was conducted under the RSS contract 89243318CFE000003.