Recent Sealing Developments for Solid Oxide Fuel and Electrolysis Cells

This work was supported by the Department of Energy through SBIR Program: DE-SC0018534

GasLok[™] Sealing Concept

- Seals remains a persistent issue facing SOFC developers
- Reliable cost-effective seal required to achieve:
- Long-term durability (< 0.2 % degradation per 1000 hours)</p> Cost targets (Stack \$225/kW)
- ► GasLok is cost-effective, manufacturable sealing approach
- Designed to address critical issues associated with current sealing technologies:
- Improve durability and thermal cycling performance

Composite-Glass Seal

- Multi-layer tape seal with graded CTE to improve thermal cycling
- Crystalline or amorphous glass matrix
- **Corrosion-Resistant Sealing Coating**
- Ceria protective coating
- Prevent detrimental seal/IC interactions
- *AlumiLok*[™] Pre-Coating
- Roughened surface for adherent coating
- Metal Interconnect

Thermomechanical COMSOL Modeling of Seal Behavior

Single-Cell SOFC Testing

- Guide optimization of the graded seal and critical design parameters
- Strengthen graded-seal value-proposition
- Alternative approach based on optimization of seal CTE to achieve zero stress state – experimental validation of model in progress

GasLok Coating Stability

Anode side coating failure identified as key degradation mechanism More stable coating formulations under investigation

Promising Alternative Sealing Coating

- Electrolyte-supported single cell (28 cm² active area) used to assess seal performance and stability under SOFC conditions.
- Have developed electrochemical model to assess sealing based on OCV

Alignment of Seal Curing and SOFC Conditioning

- Using offline-seal testing to down-select stack conditioning protocol
- Investigate the effect of stack compression and curing time and temperature

Exposure to air at 800 °C

Manufacturability – Screen-Printed Integrated Seal/Shim

- Successful GasLok adoption requires seal format that easily integrates with customer's cell platform and manufacturing process
- Developed an integrated seal/shim product
- Graded seal screen-printed directly onto metallic shim

Screen-Print System Screening Process Parameters

Graded seal

e.0 afe 14 h cure Rate Leak Rate 28 lbf 28 h cure j j 850 °C cure 34 lbf $\mathbf{0}$ 0.6 0.2 0.6 0.6 0.4 0.4 0.2 Back Pressure /PSI Back Pressure /PSI Back Pressure /PSI

Cost-Reduction – Recycled Seal Tape Gaskets

For reduce the cost of tape-cast seal gaskets need to minimize materials loss

- Demonstrated that scrap seal tape can be successfully recycled which minimizes materials loss during casting of picture-frame seals
- Equivalent seal performance with recycled tape gaskets demonstrated

Recycled Seal Tape Gaskets

Recycled Seal Performance

New integrated seal/shim sealing product provides key benefits

Screen-printing allows minimizes materials loss – lower cost

Simplified stack build (reduced alignment issues)

For further information please contact:

Neil Kidner, Director Materials Science

Ph: (614) 842-6606 x 126 | Email: n.kidner@nexceris.com