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Overview Stress-Strain Behavior & Porosity Effects Damage in Single Cell Stack Models

Structural integrity of the cell layers dictate the performance and reliability of In view of the lack of stress-strain data, porous brittle materials are assumed to  Figure 6 presents illustrates a generic planar SOFC model for co-flow/counter-
solid oxide fuel cells (SOFCs). The ceramic and cermet materials typically used in typically exhibit nearly linear stress-strain response till failure. The behavior of flow configurations. The operating thermal contours obtained from SOFC MP
the state-of-the-art SOFCs exhibit quasi-brittle behavior within the operating prominent SOFC materials and the effect of initial porosity on their strength have — 3D for co-flow and counter-flow configurations are shown in Figures 7a and
temperatures of SOFCs (<850°C). Estimation of cell reliability based on been validated using characteristic strength data from literature. 7d respectively. The damage in PEN layers at operating and shutdown
statistical strength of brittle materials (Weibull theory) is a common practice e _ = N ot 1.4 conditions under Co-flow configuration are presented in Figures 7c and 7d
which in our experience was found to be overly conservative as it estimates Figure 2: Stress-Strain ______ ae ool | "M respectively. Figures 7e and 7f present similar results for counter-flow
localized edge cracks in one of the cell components to be 100% cell failure, Behavior Showing o= R i F | configuration. While similar damage was observed at operating condition, the
while in reality, the cell likely remains functional even with through-thickness :ﬁg‘;cttf:git:itf"(f:)ess “w :Qﬁ “m “m counter-flow configuration showed slightly higher edge damage at shutdown.
cracks in the anode or cathode. An alternate method to simulate progressive Ni/YSZ (b) YSZ and (c) Cef S ’ ’
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localized damage can lead to cell failure and complete loss of function was |
investigated using a mechanistic continuum damage mechanics (CDM) model.
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Figure 6: Generic Planar Single Cell SOFC Model for Co-flow and Counter-flow Configurations

of microcracks, microvoids, and similar defects. Stess () Stess () Sress (4P
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