Long-term performance degradation is a key barrier to SOFC commercialization and the subject of a major DOE technical target (0.2% voltage decay per 1,000 hours). Modelling is key to understanding degradation and predicting the long-term outcome of specific electrode designs. To this end, NETL’s SOFC Research Group has developed an integrated degradation model to predict the long-term performance of any electrode.

Machine Learning Analysis

A neural network model allows us to more deeply examine the relationship between the 11D input space and the outcome, including predicting unexplored portions of space.

Real Electrode Microstructures

Microstructural properties over time

Voltage decay over time at 0.25 A/cm²

With hundreds or thousands of electrodes analyzed, it becomes helpful to condense results into a single figure-of-merit.

Big Data Approach

Exploring 11D Parameter Space with Simulated Electrodes

Generating synthetic microstructures using DREAM3D allows deliberate exploration of 11-dimensional parameter space.

SHAP Values & Feature Importance

SHAP analysis* determines the relative impact on the ML model’s predicted outcome of each input/feature versus its mean value, for all cases, allowing the ranking of features by overall importance and the mapping of their impact across parameter space.

Initial Microstructure Defined by 11 Independent Parameters

2 independent phase fractions
3 average particle/pore sizes
3 particle/pore polydispersity (breadth of distribution)
3 phases’ heterogeneity or “well-mixedness”

Evaluating Long-Term Performance

Sample output of one electrode

Microstructural properties over time:
At every time step:
• Polarization curves
• Overpotentials
• Spatially resolved current density

Choose an operational current density (e.g. 0.8 A/cm²)

4Vₘₐₓ from 0 to 1,000 hrs

Voltage decay is important but misses whether electrode was a poor performer to begin with.

With this choice of figure of merit, we can now map the 11 independent input parameters, or “features,” to this 1 outcome value.

Analysing lifetime energy produced versus one or two features at a time is possible manually, but interrelationships between features makes higher-dimensional analysis difficult. We turn to machine learning to better understand the growing bank of high-dimensional results.

Predicting Long Term SOFC Performance

Long-term performance degradation is a key barrier to SOFC commercialization and the subject of a major DOE technical target (0.2% voltage decay per 1,000 hours). Modelling is key to understanding degradation and predicting the long-term outcome of specific electrode designs. To this end, NETL’s SOFC Research Group has developed an integrated degradation model to predict the long-term performance of any electrode.

Optimized for high-throughput, unattended operation on NETL’s Joule supercomputer

Bank of 45,000 unique electrodes successfully generated on NETL’s Joule supercomputer

Training dataset

Test dataset

Update model weights

Target

Comparison shows predictive ability of model

New predictions

• Explore new space
• Determine feature importance/impact

Energy produced in 1,000 hrs

Captures initial performance as well as decay. Also a proxy for $5/kWh, a key metric for industry.

4Vₘₐₓ from 0 to 1,000 hrs

Voltage decay is important but misses whether electrode was a poor performer to begin with.

With this choice of figure of merit, we can now map the 11 independent input parameters, or “features,” to this 1 outcome value.

Analysing lifetime energy produced versus one or two features at a time is possible manually, but interrelationships between features makes higher-dimensional analysis difficult. We turn to machine learning to better understand the growing bank of high-dimensional results.

SHAP analysis determines the relative impact on the ML model’s predicted outcome of each input/feature versus its mean value, for all cases, allowing the ranking of features by overall importance and the mapping of their impact across parameter space.

Feature Importance Rankings

Top-ranking features are recommended for further study.