Mapping Long-Term SOFC Performance versus Initial Microstructure
with an Integrated Model and Machine Learning Innovation Center | [TESCHNOLOGY

William K. Epting,'? Jerry H. Mason,*? Yinkai Lei,”> Thomas Kalapos,'? Harry Abernathy,-?> Gregory Hackett?
1US Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA /Morgantown, WV / Albany, OR; ’Leidos Research Support Team, Pittsburgh, PA / Morgantown, WV / Albany, OR

N: NATIONAL
Research & am |[ENERGY

Predicting Long Term SOFC Big Data Approach Machine Learning Analysis

Pe rfo r m a n Ce Exploring 11D Parameter Space W|th Simulated Electr()d es A neural network model allows us to more deeply examine the relationship between the 11D input space

and the outcome, including predicting unexplored portions of space.
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Top-ranking features are recommended for further study.
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