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Multiphysics 
model predicts 

cell performance 
from 

microstructural 
properties

Coarsening phase-field 
model predicts 

microstructure after 
operation

Microstructural 
analysis extracts 

performance-
relevant 

properties
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Predicting Long Term SOFC 
Performance

Big Data Approach
Exploring 11D Parameter Space with Simulated Electrodes

Evaluating Long-Term Performance
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T. Hsu et al., JPS 386 pg. 1 (2018)

MSRI Cathode (real microstructure)
•Imaged at CMU by PFIB-SEM
•Segmented and run through integrated 
degradation model

In
te

rf
ac

ia
l a

re
as

 [
µ

m
2 /

μ
m

3 ]

A
ve

ra
ge

 d
ia

m
et

er
 [

µ
m

]

TP
B

 d
en

si
ty

 [
µ

m
/μ

m
3 ]

P
h

as
e

 f
ra

ct
io

n
s

YSZ

Pore
LSM

0

100

200

300

0

0.5

1

1.5

0 0.2 0.4

J.H. Mason et al., JECS 
v165.2 pg F64 (2018)

Yinkai Lei et al., J. Power Sources, 
v345 pg 275 (2017)

W.K. Epting et al., 
JACerS v100 pg. 2232 
(2017)

Optimized for high-throughput, 
unattended operation on NETL’s 

Joule supercomputer

Real Electrode Microstructures

Combinations of parameters in 11-dimensional space rapidly approach tens 
of thousands of electrodes to explore – not feasible  when experimental 
characterization takes days.

Initial Microstructure Defined by
11 Independent Parameters

Same particle size 
distributions and fractions, 

but differently mixed

Pore

LSM

YSZ

Bank of 45,000 unique 
electrodes successfully 

generated on NETL’s Joule
supercomputer

Particle size 
distribution
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0 1 … N

pf1 0.230081 0.23364

…

0.239156

pf23ratio 0.789111 0.824911 0.868857

davg1 0.363655 0.372662 0.37807

davg2 0.385066 0.40092 0.416845

davg3 0.413405 0.459561 0.525972

std1 0.138111 0.141968 0.139824

std2 0.140301 0.144869 0.14958

std3 0.148107 0.168732 0.204666

hf1 0.000676 0.000379 0.000674

hf2 0.000648 0.000861 0.000811

hf3 0.000678 0.000708 0.000945

ML model in 
training

Target
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u
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Update model weights

Repeat until satisfied

Training dataset

Lifetime
Energy
Predicted

344.20

346.03

…

320.77

Lifetime
Energy 
Actual

332.3234

330.5791

…

327.9687

N+1 N+2 … N+M

pf1 0.408719 0.422053

…

0.41908

pf23ratio 1.478915 1.570199 1.324395

davg1 0.604906 0.540217 0.52202

davg2 0.497866 0.502156 0.529467

davg3 0.447749 0.514631 0.407457

std1 0.236118 0.174945 0.169054

std2 0.18833 0.187123 0.206053

std3 0.164338 0.203952 0.147138

hf1 0.001006 0.001202 0.001231

hf2 0.000865 0.001019 0.001085

hf3 0.00053 0.000869 0.000572

ML model,
fully trained

Lifetime
Energy
Predicted

318.56

315.86

…

313.68

Lifetime
Energy 
Actual

310.9712

304.8955

…

315.1322
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at

u
re

s

Comparison 
shows predictive 
ability of model

Test dataset

Entirely new/made-up 
feature values within or 

near original domain

Lifetime
Energy 
Predicted

318.56

315.86

…

313.68

New predictions
• Explore new space
• Determine feature 

importance/impact

0.5% error

Machine Learning Analysis

SHAP analysis* determines the relative
impact on the ML model’s predicted
outcome of each input/feature versus its
mean value, for all cases, allowing the
ranking of features by overall importance
and the mapping of their impact across
parameter space.
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* S. M. Lundberg, S-I. Lee. A Unified Approach to 
Interpreting Model Predictions. NIPS 2017.
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SHAP Values & Feature Importance

Feature Importance Rankings

The trained and validated model allows us to examine the relationship between the model’s outcome (lifetime
energy produced) and various input parameters (or “features”), for example by mapping the partial
dependence of the outcome as one parameter is parametrically varied and others are stochastically varied.

A neural network model allows us to more deeply examine the relationship between the 11D input space 
and the outcome, including predicting unexplored portions of space.

Long-term 3D microstructure prediction

3D-resolved and whole-cell 
performance

3D property measurement 
in sub-volumes

2 independent phase fractions 3 average particle/pore sizes

3 particle/pore polydispersity 
(breadth of distribution)

3 phases’ heterogeneity or 
“well-mixedness”

T. Hsu et al., JPS 386 pg. 1 (2018)

3rd fraction set by balancing to 100%

Prediction on real cells is valuable feedback to cell manufacturers. Recommendations for how to improve 
requires mapping out relationship between microstructure and performance.

Generating synthetic microstructures
using DREAM.3D allows deliberate
exploration of 11-dimensional
parameter space

Sub-set of 600 
electrodes run 
through 
degradation 
model so far 
(not all 
parameters 
shown)

Dots: actual model outcomes
Red curve: ML model partial dependence

Long-term performance degradation is a key barrier to SOFC commercialization and the subject of a major
DOE technical target (0.2% voltage decay per 1,000 hours). Modelling is key to understanding degradation and
predicting the long-term outcome of specific electrode designs. To this end, NETL’s SOFC Research Group has
developed an integrated degradation model to predict the long-term performance of any electrode.

Top-ranking features are recommended for further study.
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Sample output of one electrode

Microstructural properties over time

At every time step:
• Polarization curves
• Overpotentials
• Spatially resolved 

current density

Voltage decay over time 
at 0.25 A/cm2

Voltage decay is important but misses 
whether electrode was a poor 

performer to begin with

With hundreds or thousands of electrodes
analyzed, it becomes helpful to condense
results into a single figure-of-merit

Choose an operational current 
density (e.g. 0.4 A/cm2)

ΔVcell from 0 to 1,000 hrs

Captures initial performance as well 
as decay. Also a proxy for $/kWh, a 

key metric for industry.

Energy produced in 1,000 hrs

Area = lifetime energy produced [Wh/cm2]
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With this choice of figure of merit, we 
can now map the 11 independent 

input parameters, or “features,” to 
this 1 outcome value.

Analyzing lifetime energy produced 
versus one or two features at a time is 

possible manually, but 
interrelationships between features 
makes higher-dimensional analysis 

difficult. We turn to machine learning 
to better understand the growing 
bank of high-dimensional results.
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Note: performance decay 
plotted beginning at first 
relaxed timestep.


