

Degradation and Performance Studies of Atomic Layer Deposition (ALD)-Stabilized Nano-Composite Solid Oxide Fuel Cell (SOFC) Cathodes

Yubo Zhang^a, Yeting Wen^b, Dr. Kevin Huang^b, Dr. Jason Nicholas^a

^a Department of Chemical Engineering and Materials Science Michigan State University East Lansing, MI

> ^b Department of Mechanical Engineering University of South Carolina, Columbia, SC

IALK Outline

1. Background and Motivation

2. ZrO₂ Overcoat as Sr Getter for Standard LSCF-GDC NCCs

Motivation for MIEC on IC Nano-Composite SOFC Cathodes SOFC Cathode Reaction: $1/2O + 2e^{-} + V^{**} = O$

Material	Oxygen Surface Exchange Coefficient (k)	Bulk Oxygen Ion Diffusivity (D)	Electronic Conductivity (σ_e)
Mixed Ionic Electronic Conductor (MIEC)	High	Low	High
Ionic Conductor (IC)	Low	High	Low

Burye and Nicholas, J Power Sources, 276, 54-61 (2015)

Standard Nano-Composite Cathode (NCC) Fabrication

Burye and Nicholas, J Power Sources, 301, 287-298 (2016)

MICHIGAN STATE UNIVERSIT

Burye and Nicholas, J Power Sources, 301, 287-298 (2016)

0.50-540°C

0.45

Atomic Layer Deposited (ALD) ZrO₂ Thin Films Have Been Reported to Improve SOFC Cathode Durability

LSC (La_{0.6}Sr_{0.4}CoO_{3- δ}) nanoparticles supported on a porous LSGM (La_{0.8}Sr_{0.2}Ga_{0.83}Mg_{0.17}O_{3- δ}) scaffold

These results may be compromised by Ag migration from the current collector into the cathode with time

Gong, et al, Nano letters, 13.9 (2013)

ALK Outline

1. Background and Motivation

2. ZrO₂ Overcoat as Sr Getter for Standard LSCF-GDC NCCs

ZrO₂ Coated Nano-Composite Cathode Fabrication

Silver Shouldn't Be Used as Current Collector Because of Its Electro-Migration at Elevated Temperature

Silver Current Collectors Unpredictably Alter Standard LSCF-GDC NCC R_p Aging Behavior

The polarization resistance vs time for three uncoated (left), three 1nm ZrO₂ coated (center) and three 2nm ZrO₂ coated (right) standard LSCF-GDC NCCs tested using silver mesh as a current collector.

Screen Printed Gold Current Collector Grids and a Pt Plate Push-Contact Setup Was Used for the Measurements Here

Porous ZrO₂ Overcoats Were Produced Using the ALD Recipes Employed Here

Gong, et al. Chem. Mater. (2013)

No ZrO₂ Thickness Variation with Cathode Thickness Was Observed

Near electrode surface

Near electrode/electrolyte interface

The ZrO₂ Overcoat Remained Conformal and Maintained the Target Thickness After 1000 Hours at 650°C

Tested cell with $3nm ZrO_2$ overcoat (actual thickness ~3.2nm)

Tested cell with $5nm ZrO_2$ overcoat (actual thickness ~5.3nm)

ZrO₂ Overcoating Did Not Significantly Alter the Initial Performance of Standard LSCF-GDC NCCs

ZrO₂ Overcoating Did Not Significantly Alter the Initial Performance of Standard LSCF-GDC NCCs

Zhang, et al. ACS Applied Energy Materials 3.4 (2020).

Different Rp Degradation Rates Were Observed for Standard LSCF-GDC NCCs with Different ALD ZrO₂ Thicknesses

MICHIGAN STATE UNIVERSITY

Independent Degradation Tests at the University of South Carolina Showed Similar Degradation Behavior to Those Taken at Michigan State and Reported on the Previous Slides

18

Gas Diffusion Limitation Changes Were Not the Main Degradation Mechanism for ZrO₂ Coated LSCF-GDC NCCs

- The ~2 Hz curve in Nyquist plots is associated with gas diffusion
- This curve did not change during aging for ZrO₂ coated LSCF-GDC NCCs

No Obvious Particle Coarsening Was Observed in Any NCCs after 1000 Hours of 650°C Degradation

XPS Showed ZrO₂ Coatings Reduced the Amount of Inactive "Surface" Sr on the LSCF-GDC NCC Surface After Aging

Even though there was more Sr on the surface after aging, the fraction of "Surface" Sr was lower with ALD ZrO2 overcoats.

Detailed XRD Showed the Existence of SrZrO₃ in 5 nm and10 nm ZrO₂ Coated Cells after Aging

SrZrO₃ is expected to form during aging for 1 and 2 nm ZrO₂ coated LSCF-GDC NCCs as well, but was hard to detect due to the low SrZrO₃ concentration.

Mechanism Hypothesis: ZrO₂ Overcoats Serve as a "Sr Getter" and Clean up the LSCF Surface During Aging

onclusions

- 1. ZrO₂ ALD overcoats 1-5 nm in thickness improved the long-term stability of standard LSCF-GDC NCCs without significantly altering their R_p between 400°C and 700°C.
- 2. Higher degradation rates, and similar initial performance, were observed for LSCF-GDC NCCs with 10 nm ZrO₂ overcoats
- 3. ZrO_2 overcoats served as "Sr getters" and reacted with inactive "Surface" Sr to form $SrZrO_3$ during aging. This reaction cleaned up LSCF surface and resulted in improved stability for ZrO_2 overcoats ≤ 5 nm thick. For LSCF-GDC NCCs with 10 nm ZrO_2 overcoats, too much $SrZrO_3$ accumulated on the LSCF surface, blocking oxygen exchange and increasing the measured degradation rate.

This work was supported by Department of Energy Award Number DE-FE0031250. Microscopy work was conducted at the Michigan State Composites Center, which is supported by the NSF Major Instrumentation Program and Michigan State University. 24